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Electron affinity is one of the most important parameters that guide chemical reactivity. 

Halogens have the highest electron affinities among all elements. A class of molecules called 

superhalogens has electron affinities even greater than that of Cl, the element with the largest 

electron affinity (3.62 eV). Traditionally, these are metal-halogen complexes which need one 

electron to close their electronic shell. Superhalogens have been known to chemistry for the past 

30 years and all superhalogens investigated in this period are either based on the 8-electron rule 
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or the 18-electron rule. In this work, we have studied two classes of unconventional 

superhalogens: borane-based superhalogens designed using the Wade-Mingo’s rule that 

describes the stability of closo-boranes, and pseudohalogen based superhalogens. In addition, we 

have shown that superhalogens can be utilized to build hyperhalogens, which have electron 

affinities exceeding that of the constituent superhalogens, and also to stabilize unusually high 

oxidation states of metals. 
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Chapter 1 Introduction 
 
 
 
Electron affinity (EA) is the energy released when an electron is added to a species. It is one of 

the major factors that govern reactivity. Molecules with high electron affinity form very stable 

negative ions which are important in the chemical and health industry as they purify air,1,2 lift 

mood3 and most importantly, act as strong oxidizing agents.4 They can oxidize species with high 

ionization potential, thereby forming novel and unusual salts. It is well known that noble gases 

have closed electronic shell structure and hence have high ionization potentials and low electron 

affinities, due to which they are chemically inert and resistant to salt formation under most 

conditions. This changed in 1962 when Bartlett synthesized the first salt of xenon, XePtF6.5 This 

was possible since PtF6 has a very high electron affinity value of 7.00±0.35 eV6 rendering it 

ability to ionize xenon.  

 

In the periodic table, halogens have the highest electron affinity since they have ns2np5 

configuration and need only one electron to attain the noble gas configuration. In fact, the 

electron affinity of Cl, 3.62 eV is the largest of all the elements.7 The discovery of Bartlett and 

coworkers has led to a search for other molecules that also can have large electron affinities. The 

motivation has been to design strong oxidants that can generate new chemistry. In 1981, Gutsev 

and Boldyrev showed that when a central metal atom is decorated with halogen ligands, the 

electron affinity of the resulting species is much above that of Cl. They called these species 

“superhalogens”.8 
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Subsequent studies have shown that the central metal atom can be a main group9-21 as well as a 

transition metal atom22-34 and the halogen ligand can be substituted by other electronegative 

ligands such as oxygen, hydroxyl radical etc.35-46 However, all superhalogens studied in the past 

30 years are based on either the 8-electron rule8-46 or the 18-electron rule.47  

 

In this work, we have shown that a new class of superhalogens can be designed by tuning the 

size and composition of borane derivatives.48 These superhalogens are based on the Wade-

Mingo’s rule, well-known for describing the stability of closo-boranes.49-52 We have also studied 

a second class of unconventional superhalogens where pseudohalogens have been used in place 

of halogens.53-54 In addition, we have examined the potential of superhalogens for applications, 

namely, in the design of “hyperhalogens”48 and in stabilizing unusually high oxidation states of 

metals.55 

 

This work is primarily theoretical in nature. Predicted values have been compared against 

experimental data, when available. Due to the choice of the theoretical methods, there is good 

agreement between experiment and theory.  

 

This brief introduction is followed by Chapter 2 in which existing literature (both theoretical and 

experimental) on superhalogens is discussed. Chapter 3 states the objectives of the project 

undertaken and Chapter 4 elaborates on the theoretical methods employed in determining the 

results. The results are divided into two sections, beginning with Chapter 5 which focuses on the 

design of unconventional superhalogens and continuing to Chapter 6 which demonstrates the 
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applications of superhalogens. Finally, in Chapter 7, the main conclusions of this study are 

summarized.  
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Chapter 2 Background and Overview 
 
 
 
2.1 Superhalogens 

Superhalogens are molecules which have electron affinities (EA) greater than that of Cl, the 

element with the highest EA (3.62 eV).7 In 1981, Gutsev and Boldyrev generalized the formula 

of one class of superhalogens to be MXn+1 where M is a central metal atom with a valency n and 

X is a monovalent halogen atom.8 This can be rationalized by realizing that MXn is a closed-shell 

neutral salt. Addition of another halogen ligand results in a molecule that needs one electron to 

close the outer shell. When an electron is added to this system, the negative charge can 

delocalize over (n+1) X atoms as opposed to just one, and hence the energy of the anion is 

lowered considerably. As a result, the EA of such a cluster is greater than that of the constituent 

halogen atom. For example, the electron affinity of NaCl, a salt, is 0.727 eV56 and that of NaCl2, 

a superhalogen, is 5.77 eV15, which is about 1.5 times that of Cl (see Figure 1).  

 

 

Figure 1. Electron affinity: From halogen to superhalogen 
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Simple electron counting rules can be employed to design new superhalogens and to understand 

their stability. These are discussed in the following section. 

 

2.2 Electron Counting Rules 

Electron counting rules have been known to play an important role in describing the stability and 

chemistry of atoms and compounds. For example, the octet rule57-58 is responsible not only for 

the inertness of noble gas atoms but also for the reactivity of elements such as alkali metals and 

halogens. The 18-electron rule,59-61 on the other hand, is mainly associated with compounds 

composed of transition metal atoms such as Cr(C6H6)2 and V(CO)6
-. These two electron counting 

rules can be used to form stable negative ions.  

 

2.2.1 Octet Rule 

According to the octet rule, eight electrons are required to complete the valence of a simple 

element and attain a noble gas configuration. Therefore, elements combine in such a manner so 

that each element has a full octet. The simplest example is that of a halogen atom which has 

ns2np5 as its outermost orbital. Since only one electron is needed to satisfy the octet rule, the EAs 

of halogens atoms are high (3.0-3.6 eV).62 The octet rule is followed (with few exceptions) by 

most main group elements. Considerable research over the past three decades has demonstrated 

that the octet rule can be used to design and synthesize superhalogens.8-46 For example, NaCl2 

could be hypothetically thought of as (NaCl)Cl where the Na and Cl atoms in NaCl have 

complete octets but the second Cl atom does not. Therefore, addition of one extra electron 

completes the electronic shell and stabilizes NaCl2-. This makes the corresponding neutral a 

superhalogen.15  
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2.2.2 18-electron Rule 

The 18-electron rule governs the stability of many transition metal complexes. As per this rule, 

18 valence electrons (10 d-electrons, 2 s-electrons and 6 p-electrons) are required to complete the 

electronic shell of the central atom. Ferrocene [Fe(C5H5)2] and nickel carbonyl [Ni(CO)4]are 

prime examples of molecules whose stability is dictated by the 18-electron rule. It has been 

shown that, using this rule clusters composed of only metal atoms, such as M@Au12 (M=V, Nb, 

Ta) clusters can also form superhalogens.47  

 

From these two rules it is evident that to be a superhalogen, a molecule needs to have an optimal 

size and one electron less than that required to complete the electronic shell. 

 

2.3 Theoretical and Experimental Studies 

A substantial number of superhalogens have been studied9-47 theoretically as well as 

experimentally since the pioneering work of Gutsev and Boldyrev.8 The superhalogen properties 

of a cluster can be characterized theoretically by calculating the difference in the energies 

between the neutral and the anionic cluster. A value greater than 3.62 eV corresponds to 

superhalogen behavior. Note that a particular molecular formula may correspond to multiple 

isomers with different relative energies. Depending on the structure of the neutral and the anion 

clusters chosen, the electron binding energy (EBE) may correspond to an adiabatic detachment 

energy, a vertical detachment energy or the electron affinity. Methods for calculating each of 

these parameters is described in section 5.2.2. Typically, first principle calculations such as ab 

initio methods and density functional theory (DFT) are used to predict these values.  
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Experimentally, the electron affinities can be determined using photoelectron spectroscopy (UV 

PES). Here, a mass selected cluster anion is crossed with photons of fixed frequency, ν and the 

kinetic energy, Ekin of the photo-ejected electron is measured. Spectroscopic properties are 

studied by using the energy conserving equation,  

Eanion + hν = Eneutral + Ekin, 

where hν is the energy of the photon, Eanion is the energy of the anion and Eneutral is the energy of 

the neutral that results following photodetachment. The electron binding energy is given by,  

EBE = Eneutral - Eanion = hν - Ekin. 

 

The simplest superhalogens are of the form MX2 where M is a monovalent metal (M=Li, Na, Cu; 

X=F, Cl, Br, I).15,17,24,25 The first experiments on superhalogens carried out using photoelectron 

spectroscopy have shown that vertical detachment energies of the clusters studied (M=Li, Na; 

X=Cl, Br, I) lie between 4.5-6.0 eV.17 Superhalogens of divalent and trivalent metal atoms of the 

form MX3 (M=Be, Mg, Ca; X=F, Cl, Br) and MX4 (M=B, Al; X=F, Cl, Br) respectively, have 

also been studied.9-11,16,18-20 In general, the electron affinity increases with increasing size of the 

cluster and electronegativity of the ligand. Though initially majority of the work was done using 

sp-block metals9-21 as the central metal atom, gradually there has been increasing work on d-

block transition metals.22-34 Transition elements have variable valency. For example, the 

oxidation state of Mn can range from -3 to +7. Therefore, it is not clear for what value of n, an 

MXn cluster (M=transition metal) will behave as a superhalogen. Recent studies on MCln (M=Sc, 

Y, La and n=1-5) have been aimed at addressing this question.28 Other transition metals that have 

been studied as central atoms in superhalogens include Cu24,25, Ag25, Au25, Pt29,34, Mn27,30, Cr32 

etc.  
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Superhalogens with more than one metal centers have also been studied.30,63-68 Examples include 

Mg2F5, Mg3Cl7, NanCln+1, CumCln etc. There has been some effort in building superhalogens 

without halogens. Other electronegative ligands such as O, OH, etc. have been studied as 

halogen alternatives.35-46 Moreover, unusual superhalogens such as those composed solely of 

metals such as Ta@Au12 have been theoretically studied and confirmed experimentally.47 It has 

also been demonstrated that clusters without halogen atoms (such as MHn)37,38 or without metal 

atoms (such as HnFn+1, BO2 and ClO4)69-71 can behave as superhalogens. Currently, the highest 

predicted vertical detachment energy of a molecule is 13.871 eV for the cluster H12F13
-.69  

 

2.4 Applications 

Superhalogens are important as they form very stable negative ions. Therefore, they are common 

anions in many known salts, some of which are notable for their strong oxidizing properties (e.g. 

KMnO4 and KClO4). They are also promising candidates as building units of novel chemical 

compounds.  

 

In 2010, Willis et al. showed that hierarchical structures called “hyperhalogens” can be made by 

replacing the halogen atoms in a traditional superhalogen with other superhalogens.72 The 

hyperhalogens have electron affinities that even surpass that of the constituent superhalogens. 

This was shown with the example of Au(BO2)2. Here, BO2 is a superhalogen with an EA of 4.32 

eV71, AuBO2 is salt with an EA of 2.80 eV and Au(BO2)2 is a hyperhalogen whose EA is 5.70 

eV72 (see Figure 2). In general, hyperhalogens would obey the formula MYn+1 where Y is a 

superhalogen.  
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Figure 2. Electron affinity: From superhalogen to hyperhalogen 

 

In 2011, the discovery of a class of polynuclear magnetic superhalogens of the form MnnCl2n+1 

(n=1, 2, 3...) was reported.30 It was shown that these molecules could be used to build salts. In 

the particular example of KMnCl3, it was proposed that the bulk phase would exhibit 

antiferromagnetic properties. Existing literature on this well-known perovskite salt confirms this 

prediction. 

 

Recently, it has also been demonstrated that superhalogens can oxidize certain neutral species 

(SiO2, NH3, etc.) with moderately high ionization potentials to form stable ionic salts.73 

Superhalogens have also been shown to increase the work function of graphene.74 This property 

could be utilized in designing graphene-based electrodes. Other potential applications of 

superhalogens include but are not limited to synthesis of organic superconductors75 and materials 

with non-linear optical properties.76  

 

2.5 Unexplored Territories 

Though there has been significant work in the arena of superhalogens, there is much that is left to 

be explored. The simplest of these is to complete a comprehensive study of superhalogens using 
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elements spanning the entire periodic stable. This would give us valuable insight into how the 

superhalogen behavior varies down a group, across a row and as a function of composition. 

Moreover, this may lead to the discovery of useful halogen-free superhalogens with very large 

electron affinities. Halogens (especially F) are corrosive and therefore require special handling 

care. This poses as an obstacle during the synthesis of superhalogens. It is possible that halogen-

free superhalogens may be prepared under less hazardous conditions. Investigating the stability 

of these superhalogens compared to that of conventional metal-halogen superhalogens would be 

important. It would also be an interesting study to see if the stability can be modified if electron 

counting rules, other than the 8 and 18 electron rules were used to generate these superhalogens. 

 

Moreover, most studied superhalogens are binary i.e. they consist of two elements. Not much is 

known about the behavior of superhalogens whose composition extends beyond binary species. 

One could think of building such superhalogens by replacing the halogen atoms by 

pseudohalogens such as CN, SCN, NCO etc. This possibility has been somewhat explored in the 

work of Smuczynska and Skurski using Li, Na, Be, Mg, Ca, B and Al as the central metal 

atoms.77 However, a more systematic and elaborate study is required to understand how these 

superhalogens compare with traditional ones.  

 

A majority of the work done on superhalogens is theoretical, awaiting experimental validation. 

Therefore, while experiments are encouraged, it is also important to theoretically study those 

systems which could be replicated in experiments without posing difficulties. This would also 

increase the chances of practical applications of these superhalogens. 
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Suggesting and testing applications of superhalogens are complex problems. For example, due to 

their large electron affinities, it can be expected that superhalogens may also be able to stabilize 

unusually high oxidation states of metals. Question remains if this is possible in practice, and 

how stable the resulting compounds would be. A link between superhalogens and weakly 

coordinating ions, which are known to be stabilizing ligands, would facilitate this investigation 

and give rise to new chemistry. 
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Chapter 3 Objectives  
 
 
 
This work addresses some of the problems on superhalogens that remain unexplored. 

Specifically, the main motivation of this work is to answer the following questions: 

 

(1) Is it possible to use any other electron counting rule (apart from 8-electron and 18-

electron rules) to design superhalogens? 

(2) Must superhalogens consist of a metal and/or a halogen atom? 

(3) Can pseudohalogens be used in place of halogens to design superhalogens containing 

transition metal atoms? 

(4) How do pseudohalogen-based superhalogens compare with conventional superhalogens? 

(5) Can unconventional superhalogens also be used to design hyperhalogens? 

(6) Are superhalogens strong enough to oxidize metals beyond their normal valence? 

 

Questions (1) and (2) are addressed in section 5.1 Answers to questions (3) and (4) are explored 

in section 5.2 Sections 6.1 and 6.2 deal with questions (5) and (6), respectively. 
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Chapter 4 Theoretical Methods 
 
 
 
This chapter provides a brief overview of the theoretical methods that have been used to study 

the systems of interest. Namely, Density Functional Theory (DFT) has been employed to carry 

out all calculations using B3LYP hybrid functional for exchange-correlation. Different basis sets 

have been chosen depending on the system studied. The Gaussian 03 and Gaussian 09 softwares 

have been employed to perform the calculations. The following sections begin with quantum 

mechanics and thereafter DFT is introduced. 

 

4.1 The Schrodinger Equation 

The chemistry of elements and compounds is guided by their electronic configuration. To have a 

theoretical understanding of the structure, stability and reactivity of chemical species, it is 

therefore important to calculate electronic properties. 

 

Using wave mechanics as a tool, in 1926, Schrodinger proposed an equation solving which the 

exact energy of a system can be determined.78 The time-independent non-relativistic Schrodinger 

equation is defined as an eigenvalue problem of the form  

퐻훹 = 퐸훹      4.1 
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where 퐻 is the Hamiltonian operator which operates on 훹, the wave function of the system and 

returns 퐸, the energy eigenvalue.  This is a second order differential equation as will be seen 

from the description of 퐻.  

 

In a system consisting of 푁 electrons and 푀 nuclei,  

 훹 =  훹  (푥⃗ , 푥⃗ , … , 푥⃗ , 푅⃗ , 푅⃗ , … , 푅⃗ )   4.2 

and it represents the wave function of the ith state of a system. It is dependent on 3푁 spatial co-

ordinates {푟⃗ } and 푁 spin co-ordinates {푠 }, which are collectively represented by {푥⃗ } as well as 

the 3푀 spatial co-ordinates of the nuclei. In absence of any external magnetic or electric field the 

Hamiltonian operator 퐻 comprises of  

i) the kinetic energy operator of the electrons given by 

푇 =  −
ℎ

8휋 푚 훻  

            4.3 

ii) the kinetic energy operator of the nuclei described as 

푇 =  −
ℎ

8휋 푀 훻  

            4.4 

iii) the potential acting on the electrons due to the nuclei (often called external potential 

in density functional theory) 

푉 =  −푒
푍
푟  

            4.5 
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iv) the electron-electron interaction term 

푉 =  푒
1
푟  

            4.6 

v) the repulsive electrostatic interaction between the nuclei 

푉 =  푒
푍 푍
푅  

            4.7 

Therefore, the net Hamiltonian is given by 

    퐻 =  푇 +  푇 + 푉 + 푉 + 푉     4.8 

 

Here, ℎ is the Planck’s constant, 푚  is the mass of an electron, 푀  is the mass of the Ath nucleus, 

푒 is the charge of an electron, 푍  is the nuclear charge of the Ath nucleus. Subscripts i and j run 

over 푁 electrons, while A and B run over M nuclei. The Laplacian operator 훻   is defined as a 

sum of differential operators in Cartesian co-ordinates as 

훻 =
휕
휕푥 +

휕
휕푦 +

휕
휕푧  

            4.9 

It is a common practice to write these quantum mechanical equations without the use of 

fundamental physical constants. Therefore, me, e, ℎ 2휋, 4휋휖  (permittivity of free space) are all 

set to one. Other physical quantities are expressed as multiples of these constants. Therefore, the 

Hamiltonian can now be written as  
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퐻 = −
1
2 훻 −

1
2푀 훻 −

푍
푟 +

1
푟 +

푍 푍
푅  

            4.10 

 

4.2 The Born-Oppenheimer Approximation 

Equation 4.10 is a partial differential equation in 4N+3M co-ordinates (3N electronic spatial co-

ordinates, N electronic spin co-ordinates, and 3M nuclear spatial co-ordinates) and therefore, 

impossible to solve analytically for systems with more than one electron. However, systems of 

interest to chemists are mostly multi-atomic systems, let alone multi-electronic systems. Such 

studies are computationally expensive and require simplified schemes. 

 

The Schrodinger equation can be simplified with the aid of several approximations. The first 

approximation given by Born and Oppenheimer takes into account the significant mass 

difference between an electron and nuclei. The mass of the lightest nucleus (i.e. mass of a proton, 

1H), is about 1800 times greater than that of an electron. Consequently, electrons move much 

faster than nuclei. In other words, the kinetic energy of the nuclei is negligible compared to that 

of the electrons. The Born-Oppenheimer approximation79 assumes the nuclear kinetic energy to 

be zero. This fixes 푅⃗  and therefore, the inter-nuclear repulsion becomes a constant. 

 

The Hamiltonian is reduced to  

퐻 = −
1
2 훻 −

푍
푟 +

1
푟 +

푍 푍
푅  

            4.11 



www.manaraa.com

 
 

17 
 

the last term being a constant. 

 

Moreover, the Hamiltonian can now be separated into two components: nuclear and electronic, 

where the electronic Hamiltonian is given by 

퐻 =  푇 + 푉 + 푉 = −
1
2 훻 −

푍
푟 +

1
푟  

            4.12 

The problem of electronic structure calculation has now been simplified to solving the electronic 

Schrodinger equation given by 

퐻 훹 = 퐸 훹     4.13 

where  

 훹 =  훹  (푥⃗ , 푥⃗ , … , 푥⃗ ) .   4.14 

As subsequent discussions will focus only on the electronic Schrodinger equation, the subscript 

‘elec’ is dropped hereafter. 

 

Ψ itself is not an observable. However, |훹(푥⃗ , 푥⃗ , … , 푥⃗ )| 푑푥⃗ 푑푥⃗ …푑푥⃗  represents the 

probability that all N electrons can be simultaneously found within the volume element 

푑푥⃗ 푑푥⃗ …푑푥⃗ . If the co-ordinates of two electrons are interchanged, this probability should 

remain unchanged i.e. 

  훹 푥⃗ , 푥⃗ , … , 푥⃗ , 푥⃗ , … , 푥⃗ = 훹 푥⃗ , 푥⃗ , … , 푥⃗ , 푥⃗ , … , 푥⃗ . 4.15 

Electrons are fermions with half-integral spin. Consequently they have anti-symmetric wave 

functions. This implies that interchanging the state of two electrons would result in a sign change 

in the wave function i.e.  
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  훹 푥⃗ , 푥⃗ , … , 푥⃗ , 푥⃗ , … , 푥⃗ = −훹 푥⃗ , 푥⃗ , … , 푥⃗ , 푥⃗ , … , 푥⃗ .  4.16 

This anti-symmetry principle validates the Pauli exclusion principle, which states that no two 

electrons can occupy the same state. 

 

4.3 The Variational Principle 

To solve the Schrodinger equation, first the Hamiltonian has to be set up. Using equation 4.1 we 

get,  

퐻훹 = 퐸훹       4.17 

Multiplying both sides by 훹∗, the complex conjugate of 훹 , and integrating over all space, we 

get, 

훹∗퐻훹 푑푥⃗ 푑푥⃗ …푑푥⃗ = 훹∗퐸 훹 푑푥⃗ 푑푥⃗ …푑푥⃗  

           4.18 

When 훹  is normalized,  

훹∗훹 푑푥⃗ 푑푥⃗ …푑푥⃗ = 1 

            4.19 

and hence 

퐸 = 훹∗퐻훹 푑푥⃗ 푑푥⃗ …푑푥⃗  

            4.20 

In Dirac notation,  

     퐸 = 훹 퐻 훹 .     4.21 

Therefore, by determining 훹 , the total energy 퐸  can be calculated. However, this task is more 

challenging than it appears as the equation above can be solved only for selected trivial cases.  
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Approximations can be applied to determine 훹  and 퐸 . One of the most important 

approximations that is widely used to approach the problem is the variational principle. 

According to this, if a trial wave function 훹  is used to estimate the total energy 퐸  of the 

system, then, 

 훹 퐻 훹 = 퐸 ≥ 퐸 = 훹 퐻 훹    4.22 

where 퐸  is the true energy of the ground state of the system. The equality holds when 훹  and 

훹  are identical. Therefore, by minimizing the total energy, the energy of the ground state can be 

obtained. The total energy 퐸[훹] is called a functional as it is a function of another function 

훹(푥⃗). Mathematically, the variational principle can be expressed as 

 퐸 = min퐸[훹] = min 훹 퐻 훹 = min 훹 푇 + 푉 + 푉 훹   4.23 

 

4.4 The Hartree Approximation 

The Hartree approximation80 separates the one-N electron problem into N-one electron 

Schrodinger equations. The Hamiltonian is defined as 

퐻 = ℎ(푖) 

            4.24 

where  

ℎ(푖) = −
1
2 훻 −

푍
푟 +

1
푟  

            4.25 
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Electrons are assumed to be non-interacting and therefore, the total wave function is expressed as 

a product of the one-electron wave functions, called the Hartree product wave function, given 

below: 

  훹 (푥⃗ , 푥⃗ , … , 푥⃗ ) = 휒 (푥⃗ )휒 (푥⃗ ) …휒 (푥⃗ )  4.26 

 

The one electron wave functions 휒 (푥⃗ ), called spin orbitals, are composed of a spatial orbital 

휙 (푟⃗ ) and one of the two spin functions 훼(푠) or 훽(푠)   i.e.  

 휒 (푥⃗ ) = 휙 (푟⃗ )휎(푠) where 휎 = 훼 표푟 훽.   4.27 

 

Each one-electron wave function can be solved using the equation 

 ℎ(푖)휒 (푥⃗ ) = 휖 휒 (푥⃗ )     4.28 

 

The total energy of the system is given by 

퐸 = 휖  

            4.29 

Though the Hartree approximation greatly simplifies electronic calculations, it has some severe 

limitations. It neither follows the antisymmetry principle nor the Pauli exclusion principle. 

Moreover, particular electrons are assigned to particular orbitals. This is inconsistent with 

electrons being indistinguishable. In addition, the electrons are assumed to behave independent 

of each other (i.e. they are uncorrelated) which implies that the probability of finding an electron 

is totally independent of that of finding another electron. This is untrue for a real system. 
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4.5 The Hartree-Fock Approximation 

To account for the antisymmetry of the electronic wavefunction, the Hartree-Fock method81 

approximates the N electron wave function by a Slater determinant 휙  of the form 

휙 =
1
√푁!

휒 (푥⃗ ) 휒 (푥⃗ ) … 휒 (푥⃗ )
휒 (푥⃗ ) 휒 (푥⃗ ) … 휒 (푥⃗ )
…              …            …            … 
휒 (푥⃗ ) 휒 (푥⃗ )  … 휒 (푥⃗ )

 

            4.30 

which is an antisymmetrized product of N single electron wave functions 휒 (푥⃗ ). The wave 

function 휙  is antisymmetric as interchanging two rows or two columns in the Slater 

determinant results in a change in sign. If two electrons are assigned to the same orbital, that is, 

휒 = 휒 , 휙 = 0.  Therefore, 휙  follows the Pauli exclusion principle. Using the variational 

principle under the condition that 휒 (푥⃗ ) are orthonormal, the Hartree-Fock energy can be 

obtained by minimizing 퐸[휙 ]. This results in a set of N one electron Hartree-Fock equations of 

the form  

푓(푖)휒 (푥⃗ ) = 휖 휒 (푥⃗ )    i= 1 to N  4.31 

where 휖  is the eigen solution and 푓(푖) is an effective one electron operator called the Fock 

operator. It is given by  

푓(푖) = −
1
2훻 −

푍
푟 + 푉 (푖) 

            4.32 

푉 (푖) is the Hartree-Fock potential which is the average repulsive potential experienced by an 

electron due to the presence of other N-1 electrons. This simplifies the complex two electron 

operator 1 푟  to a one electron operator 푉 (푖). 
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푉 (푖) is composed of the Coulomb operator  퐽 and the exchange operator 퐾. Mathematically, 

푉 (푥⃗ ) =  퐽 (푥⃗ ) −  퐾 (푥⃗ )  

            4.33 

where  

 퐽 (푥⃗ ) = 휒 (푥⃗ )
1
푟 푑푥⃗  

            4.34 

and 

 퐾 (푥⃗ )휒 (푥⃗ ) = 휒∗ (푥⃗ )
1
푟 휒 (푥⃗ )푑푥⃗  휒 (푥⃗ ) 

            4.35 

The Coulomb operator represents the potential experienced by an electron at a position due to an 

electron in another spin orbital and is integrated over all space. The exchange operator arises 

because two electrons can exchange their positions. It is to be noted that only electrons of same 

spin can interchange position. If the electrons are of different spins the value of the exchange 

potential is zero. Another point to note from equation 4.34 is that when i=j an electron can 

interact with itself. However, this self-interaction term is cancelled out as the Coulomb and 

exchange integrals are equal and opposite in magnitude for i=j.  

 

The Hartree-Fock method utilizes the self-consistent field (SCF) method to solve for the energy. 

In this method, an initial set of orbitals is ‘guessed’ and used to construct the 푉 (푖). Then 

푉 (푖) is used to solve the Hartree-Fock equations and a new set of orbitals is obtained. This 
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process is iteratively continued till the input and output set of orbitals match within a certain 

degree of precision.  

 

The Hartree-Fock method is computationally more expensive than the Hartree method as a 

number of two electron integrals have to be computed. Though it gives better results, it does not 

account for the dynamic correlation between electrons arising out of inter-electronic repulsions 

within a short range. To include dynamic correlation, the wave function is better represented as a 

linear combination of several Slater determinants. In several theoretical methods (e.g. Moller-

Plesset Perturbation theory82, Coupled-Cluster theory83) the Hartree-Fock energy is calculated 

first and then the correction due to electronic correlation is incorporated.  

 

4.6 Density Functional Theory 

There is significant computational expense associated with the Hartree-Fock method as the wave 

function is dependent on 3N electronic spatial co-ordinates and N electronic spin co-ordinates. 

The earliest formulation of density functional theory led to a simplification of this problem by 

expressing the wave function as a function of the electron density which depends only on three 

spatial co-ordinates.  

 

4.6.1 Thomas-Fermi-Dirac Approximation 

In 1927, Thomas and Fermi84,85 showed that the kinetic energy of an electronic system 퐸  can 

be expressed as a function of the electron density 휌(푟⃗). Electrons were assumed to be non-

interacting with a homogeneous gas density. The electron density is similar to the probability 

density and is given by  
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휌(푟⃗) = |훹(푟⃗)| = 훹 푥⃗ , 푥⃗ , … , 푥⃗ , 푥⃗ , … 푥⃗    4.36 

where 휌(푟⃗) holds the property 

휌(푟⃗)푑푟⃗ = 푁 

            4.37 

휌(푟⃗) denotes the probability of finding the ith electron out of N electrons at any point within a 

given volume 푑푟⃗ where 푑푟⃗ = 푑푥⃗ 푑푥⃗ …  푑푥⃗ . 

 

The Thomas-Femi kinetic energy is then given by  

푇 [휌(푟⃗)] =
3

10
(3휋 ) [휌(푟⃗)] 푑푟⃗ 

            4.38 

The total energy of the system is then give by 

퐸 [휌(푟⃗)] =
3

10
(3휋 ) [휌(푟⃗)] 푑푟⃗ − 푍

휌(푟⃗)
푟 푑푟⃗ +

1
2

휌(푟⃗ )휌(푟⃗ )
푟 푑푟⃗ 푑푟⃗  

            4.39 

where the second term represents the attractive nucleus-electron Coulombic interaction and the 

third term represents the inter-electronic repulsion. It is to be noted that this expression does not 

account for the electron-electron exchange energy. 

 

In 1930, Dirac introduced an exchange term86 in the Thomas-Fermi energy 

퐾 [ ] = −
3
4

3
휋

[휌(푟⃗)] 푑푟⃗ 

            4.40 
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and the resulting energy functional is therefore given by the Thomas-Fermi-Dirac approximation 

shown below. 

퐸 [휌(푟⃗)] = 퐸 [휌(푟⃗)] + 퐾 [ ]    4.41 

 

The importance of the Thomas-Fermi-Dirac approximation is that it could express the kinetic 

energy as a functional of the electron density. Also it reduced the many-body problem involving 

3N spatial co-ordinates to 3 spatial co-ordinates. However, this method does not estimate the 

energies accurately. This drawback arises from assuming electrons to be uniformly distributed in 

space as a gas.  

 

4.6.2 Hohenberg-Kohn Formulation 

Modern day density functional theory is founded upon two theorems published by Hohenberg 

and Kohn87 in 1964.  These theorems apply to a system consisting of electrons moving under the 

influence of an external potential 푉 (푟⃗). 

 

The first theorem states 

The external potential 푉 (푟⃗)  is (to within a constant) a unique functional of 휌(푟⃗); 

since, in turn 푉 (푟⃗)  fixes 퐻 we see that the total energy is a unique functional of 휌(푟⃗). 

 

From equation 4.12, we see that under the Born-Oppenheimer approximation 

퐻 =  푇 + 푉 + 푉 = −
1
2 훻 −

푍
푟 +

1
푟  
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The second term represents the external potential 푉 (푟⃗). The equation implies by fixing 

푉 (푟⃗), the Hamiltonian 퐻 is completely fixed. The first theorem of Hohenberg and Kohn 

justifies that 푉 (푟⃗) can be expressed as a function of the electron density 휌(푟⃗). They proved 

that two different external potentials 푉 (푟⃗) and 푉 (푟⃗) cannot result in the same 휌(푟⃗). They 

further proposed that the kinetic energy of the electrons and the inter-electronic repulsion could 

also be expressed as functionals of 휌(푟⃗). That is, by knowing the ground state density, the 

Hamiltonian of a many-electron system can be fully determined.  

 

The total energy, given as a functional of the electron density is 

퐸[휌] = 푇[휌] + 푉 [휌] + 푉 [휌]    4.42 

where the first term is the kinetic energy of the electrons, the second term is the external 

potential (i.e. the attraction between nuclei and electrons) and the third term is the inter-

electronic repulsion. This inter-electronic repulsion can be written as a sum of the Coulomb 

electrostatic interaction and the non-classical exchange-correlation energy 퐸 : 

푉 =
1
2

휌(푟⃗ )휌(푟⃗ )
푟 푑푟⃗ 푑푟⃗ + 퐸  

            4.43 

Equation 4.42 can be re-written as  

퐸[휌] = 퐹 [휌] + 휌(푟⃗)푉 (푟⃗)푑푟⃗ 

            4.44 

where  

     퐹 [휌] =  푇[휌] + 푉 [휌]    4.45 
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It is to be noted that 퐹 [휌] is independent of the external potential and is therefore a universal 

functional, identical for all systems. 

 

The second Hohenberg-Kohn theorem applies the variational theorem to the ground state energy 

which is a functional of the electron density. It states 

The density that minimizes the energy functional is the exact ground state density. 

 

Mathematically, the ground state energy can be obtained by 

퐸 [휌] = min 퐹 [휌] + 휌(푟⃗)푉 (푟⃗)푑푟⃗  

            4.46 

It is to be noted that though the Hohenberg-Kohn theorems state that the kinetic energy and the 

Hamiltonian can be constructed from the electron density, it does not tell us how. Therefore, it is 

unclear from these theorems what the functional form of 퐹 [휌] is. The Kohn-Sham equations 

published in 1965 address these issues. 

 

4.6.3 Kohn-Sham Equations 

The central assertion of the Kohn-Sham scheme88 is that for a particular ground state density 

휌(푟⃗) of a system of interacting particles, there exists a system of non-interacting particles. 

Calculations are performed on this fictitious system of non-interacting particles to yield the 

ground state total energy of the system of interest. The total wave function of the system is given 

by a Slater determinant of independent single electron orbitals 휙 , called the Kohn-Sham 

orbitals. The electron density is given by 
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휌 = |휙 |  

            4.47 

where 휙 = 휙 (푟⃗).  

 

The Hamiltonian for the system can be constructed as follows: 

 퐻 = − 훻 + 푉 (푟⃗)     4.48 

 

The first term on the right hand side of this equation is the kinetic energy operator and the second 

term represents the “effective potential”. The effective potential includes the effects from the 

external potential (i.e. the electron-nucleus interaction), the inter-electronic Coulomb repulsion 

and the exchange-correlation. The Kohn-Sham wave functions therefore satisfy the equation 

 − 훻 + 푉 (푟⃗) = 휖 휙     4.49 

 

The total energy of the interacting system is given by 

 퐸 = 푇[휌] + 퐽[휌] + 퐸 [휌] + 퐸 [휌]   4.50 

where 

푇[휌] = 휙 −
1
2훻 휙  

            4.51 

which is the exact kinetic energy of the non-interacting system. The Coulomb repulsion can be 

expressed as  
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퐽[휌] =
1
2

|휙 (푟⃗ )| |휙 (푟⃗ )|
푟 푑푟⃗ 푑푟⃗  

            4.52 

The nucleus-electron interaction is given by 

퐸 [휌] = −
푍
푟

|휙 (푟⃗ )| 푑푟⃗  

            4.53 

The Kohn-Sham equations are solved self-consistently. An initial density is first chosen and the 

effective potential is constructed. The solution yields a new initial density. This process is 

continued till the input and output densities are the same within the precision level desired. 

 

The importance of the Kohn-Sham method is that it converted the many-body problem into an 

independent particle problem. The exact kinetic energy of the system of non-interacting particles 

is first calculated and then the contributions from the inter-electronic interactions are estimated 

as 퐸 . 

 

It is important to note that the total energy only depends on the electron density 휌(푟⃗) and that 

except 퐸 , all energy component of the total energy have explicit functional forms. The 

approximations that have been made to construct the functional form of 퐸  will be discussed in 

the next section. As will be shown, 퐸  can be expressed as a functional of 휌(푟⃗). 
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4.6.4 Functionals for Exchange-Correlation 

In density functional theory (DFT), the exchange correlation energy 퐸  is expressed as a 

function of the electron density. However, it is a difficult task to find the exact functional form 

of 퐸 . Therefore, the value of 퐸  is found out by using approximations. The exchange-

correlation energy 퐸  is better treated by separating it into two terms, one term dealing with the 

exchange energy 퐸  and the other term dealing with the correlation energy 퐸 . Therefore, 

퐸  can be expressed as  

 퐸 [휌] = 퐸 [휌] + 퐸 [휌]    4.54 

퐸  and 퐸  correspond to the Kohn-Sham orbitals given in equation 4.49. 

 

It should be emphasized that the exchange energy is numerically larger than the corresponding 

correlation energy. 

 

4.6.4.1 The Local Density Approximation (LDA) 

The Local Density Approximation is applied to estimate the value of 퐸  and 퐸 . Here, it is 

assumed that the electron density 휌(푟⃗) is a slowly varying function of 푟⃗. That is, the electron 

density is treated locally as a uniform electron gas. Under this approximation, the exchange 

energy is given as  

퐸 = 휌(푟⃗)휖 푑푟⃗ = −
3
4

3
휋

[휌(푟⃗)] 푑푟⃗ 

            4.55 
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where 휖  is the exchange energy per particle given by   

휖 = −
3
4

3
휋

[휌(푟⃗)]  

            4.56 

For a homogeneous electron gas, the correlation energy 퐸  cannot be expressed analytically. 

However, it can be determined to great accuracy by using Quantum Monte Carlo methods. One 

of the most widely prevalent LDA functionals used for 퐸  is given by Vosko, Wilk and Nusair, 

and referred to as the VWN potential.89  

 

The advantage of the LDA method is that it is relatively simple and computationally 

inexpensive. The main disadvantages on the other hand is that this method overestimates 

bonding (that is, underestimates bond lengths) and underestimates equilibrium volume as well as 

band gap. Also, the functional cannot describe reaction barriers or calculate total energies 

correctly. This arises from the issue that the LDA method underestimates exchange energy by 

about 10% and overestimates correlation energy to be double of the actual value. 

 

4.6.4.2 The Generalized Gradient Approximation (GGA) 

The LDA method approximates the energy of the true density by the energy of a local constant 

density. Therefore, in situations where the density 휌(푟⃗) varies rapidly with 푟⃗ such as in 

molecules), the true energy of the system is poorly represented.  To overcome the limitations of 

LDA, the Generalized Gradient Approximation (GGA) is used.  Here, the exchange correlation 

function 퐸  is dependent on both the density and the density gradient. Mathematically, the 

gradient-corrected exchange correlation function can be expressed as 

 퐸 = 퐸 [휌(푟⃗),훻휌(푟⃗)]    4.57 
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There are several functionals that are used for GGA exchange and correlation. Examples include 

the B88 functional for exchange90, the LYP functional for correlation and the PW91 functional 

for exchange and correlation91.  The gradient-corrected exchange functional proposed by Becke 

in 1988 termed as B88 is given as 

 퐸 = 퐸 + ∆퐸     4.58 

where  

∆퐸 = −훽휌
푥

1 + 6훽푥 sinh 푥 

            4.59 

The parameter 훽 is determined from atomic data while  

푥 =
|훻휌|

휌
 

            4.60 

4.7 The B3LYP Hybrid Functional 

In 1993, Becke proposed a gradient corrected exchange functional that combines the exact 

Hartree-Fock (HF) exchange and the DFT exchange energies92. Therefore, this functional is 

called a hybrid functional. This 3-parameter exchange functional together with the correlation 

functional proposed by Lee, Yang and Parr93 is called the B3LYP. The B3LYP hybrid functional 

can be mathematically expressed as  

 퐸 = 퐸 + 푎 (퐸 − 퐸 ) + 푎 ∆퐸 + 퐸 + 푎 (퐸 − 퐸 ) 4.61 

where 푎 = 0.20; 푎 = 0.72; 푎 = 0.81 which are semi-empirical constants obtained by fitting 

experimental data.  
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As can be seen, the B3LYP functional is combination of the LDA exchange, HF exchange, 

Becke’s gradient corrected exchange with the Lee-Yang-Parr gradient corrected correlation 

functionals. 

 

An important thing to point out would be that though hybrid functionals partially account for the 

electron-electron self-interaction term, effects of this non-physical term is not totally canceled in 

density functional theory. 

 

4.8 Basis sets 

Molecular orbitals are often represented as a Linear Combination of Atomic Orbitals (LCAO) as 

follows 

훹 = 퐶 휒  

            4.62 

where  휒  represents a predefined set of basis functions for the µth orbital and 퐶  are expansion 

coefficients.  

  

There are two types of basis functions that used in the Kohn-Sham DFT regime of electronic 

structure calculations. They are the Slater Type Orbitals (STOs)94 and the Gaussian Type 

Orbitals (GTOs)95. 

 

The Slater Type Orbitals decay exponentially with increasing distance from the nucleus and are 

given by 
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휒(푟, 휃,휙) = 푁푟 푒 푌 , (휃,휙)    4.63 

where N is a normalization constant, 휁 is called the “Slater orbital exponent”, (푟, 휃,휙) are 

spherical co-ordinates and 푌 ,  represent the conventional spherical harmonics.  

 

One problem with STOs is that there are no radial nodes predicted from the analytical 

expression. Therefore, to account for radial nodes, atomic orbitals are given as a combination of 

STOs.  When the electron is near the nucleus, they are well-represented by STOs. However, it is 

substantially computationally expensive to calculate 3 or 4 centered electron integrals in SCF 

calculations. Therefore, STOs are used mainly for atomic and linear systems. 

 

It was realized by Frank Boys that STOs can be represented as a linear combination of Gaussian 

orbitals. Since it is relatively easier to calculate integrals (such as overlap integral and so on) 

using Gaussian orbitals, the Gaussian Type Orbitals (GTOs) are widely used today. GTOs can be 

expressed as  

휒(푥, 푦, 푧) = 푁푥 푦 푧 푒      4.64 

where 푙 , 푙 , 푙  are the angular part of the orbitals and 휁 represents the radial part of the function. 

The main drawback of GTOs is that a zero slope is obtained near the nucleus, instead of a cusp. 

 

In general it takes about three times as many GTOs as STOs to achieve a particular degree of 

accuracy. Therefore, a number of GTOs are combined to form one contracted Gaussian function 

(CGF). The simplest basis sets have only one basis function (or one contracted function in case 

of CGF) to represent each atomic orbital and are therefore called minimal basis sets. One of the 

most widely used minimal basis sets is the STO-nG basis set which is constructed by a linear 
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combination of n primitive GTO functions.96 For example, the STO-3G basis set is made of 3 

GTO functions. In higher basis sets, called double-zeta basis sets, two functions are used for each 

atomic orbital. Now, given that only the valence electrons are involved in bonding, the core 

electrons can be treated by minimal basis sets while the valence electrons can be represented by 

double/triple/quadruple zeta basis sets. Such kind of basis sets developed by Pople and 

coworkers are called split valence basis sets.97,98  They are represented as X-YZG (for double-

zeta basis sets). This means that X primitive GTOs are used to represent each of the core 

electrons and the outer electrons are each represented by two basis functions each consisting of Z 

and Y primitive GTOs, respectively. For example, in the 6-311G basis, 6 primitive GTOs make 

up each of the core orbitals and the valence orbitals are represented by 3 basis functions each of 

which is composed of 3, 1 and 1 gaussian functions, respectively. Polarization functions 

(represented as *) and diffuse functions (represented as +) are added to improve basis sets. The 

former allows flexibility for atoms to form chemical bonds while the latter helps to improve the 

predicted properties of systems with diffuse electron density such as anions.  

 

The inert core electrons of atoms heavier than krypton (such as gold) are often modeled by an 

effective core potential (ECP) called a pseudopotential. The pseudopotential is called relativistic 

if relativistic effects have been incorporated into it. For example, the Stuttgart pseudopotential 

(SDD) is a common relativistic pseudopotential used for gold.99,100 

 

4.9 Computational Methodology 

In this work, structural, electronic and spectroscopic properties of clusters, specifically 

superhalogens, have been studied using density functional theory and the B3LYP hybrid 
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functional92,93 for exchange-correlation. Different basis sets have been chosen depending on the 

system under investigation. The choice was based on earlier literature available for similar 

systems that gave reliable results in good agreement with experiments.  

 

We used the 6-311++G** basis set97,98 for Li, Na, K, B, and H, and the Stuttgart 

pseudopotential99,100 SDD for Rb and Cs in sections 5.1  and 6.1 . In section 5.2 we used the 6-

311+G* basis set for C and N while using the Stuttgart pseudopotential SDD basis set for Au. In 

section 6.2 we used the 6-311+G* basis set for Zn, F, B and O and the Stuttgart pseudopotential 

SDD for Au.  

 

In all cases, the structures were optimized to find out geometry and the corresponding total 

energies were calculated. These energies were utilized to compute the vertical detachment 

energies (VDE) and the adiabatic detachment energies (ADE) of the clusters. Detailed 

description and definitions of VDE and ADE are given in section 5.2.2  To find out the lowest 

energy geometry, several initial geometries were chosen and then their structures were 

optimized. The convergence in the total energy and force were set at 1x10-6 eV and 1x10-2 eV/Å, 

respectively. The dynamical stability of the clusters was confirmed by carrying out frequency 

calculations which were all found to be positive. In addition, Natural Bond Orbital (NBO) 

analysis was performed to give an indication of the nature of bonding involved in the clusters. 

 

All calculations were performed using the Gaussian 03 and Gaussian 09 softwares.101,102  
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Chapter 5 Design of Unconventional Superhalogens 
 
 
 
5.1 Borane-based Superhalogens 

 

5.1.1 Introduction 

Boranes belong to a class of compounds with rich chemistry. Boranes and their derivatives, 

created by replacing B with C (carboranes), B with metal atoms (metalloboranes), and H with 

halogens (F and Cl) have far reaching applications. They are used in boron neutron capture 

therapy,103-107 pharmaceuticals,108 and as ligands in the synthesis of unusual coordination 

compounds.109 They are also useful as superacids,110 weakly coordinating anions111 and potential 

candidates for hydrogen storage.112-114 Larger boranes form polyhedral complexes and exist as 

highly stable anions. To realize the full potential of this class of compounds a fundamental 

understanding of the stability of boranes and how they can be tuned by tailoring size and 

substitution is important.  In this section we focus on the stability of the closo-boranes and show 

that by using simple electron counting rules one can choose the appropriate size and substituent 

to render boranes not only enhanced stability but also high electron affinity far exceeding the 

value of any halogen atom. 

 

The stability of closo-boranes (BnHn
2-),115 is governed by the Wade-Mingos rule49-52 which states 

that in polyhedral borane clusters with n vertices (n+1) pairs of electrons are needed for cage 
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bonding. Here, the H atoms are radially bonded to the B atoms and two of the four electrons of 

the BH pair are tied up in n covalent bonds. This leaves 2n electrons of a BnHn polyhedral cluster 

for cage bonding. Since (2n+2) or (n+1) pairs of electrons are needed for stability, the dianions 

of BnHn are stable. This rule has recently been used for the focused discovery of numerous Al-H 

clusters with potential applications in hydrogen storage.116  

 

Here, we show that an entirely new class of superhalogens can be created by using the Wade-

Mingos rule without the benefit of either a metal or a halogen atom. To demonstrate the power of 

this rule we concentrate on replacing B with C or adding an extra H or alkali metal atom to the 

well known B12H12 cluster, thus opening the door to a vast list of rationally designed stable 

borane derivatives.  This finding also extends the pool of highly electronegative ions which play 

an important role in chemical industry. 

 

5.1.2 Results and Discussion 

A conventional superhalogen has the formula MXn+1 where n is the maximal valence of the metal 

atom M and X represents a halogen atom.8 The electron affinities of MXn+1 clusters are larger 

than those of X atoms since the extra electron is distributed over (n+1) X atoms. However, our 

prime target is to demonstrate that Wade-Mingos rule can also be used to predict new 

superhalogens. We show this by performing a systematic study based on density functional 

theory, focusing on borane derivatives. We note that while BnHn
2- clusters for n ≤ 11 are unstable 

against auto ejection of the second electron,117,118 B12H12
2- is stable. In other words, the total 

energy of B12H12
2- is lower than that of B12H12

-.  When one hydrogen atom is added to B12H12, 

this can only bind on the bridge site forming a 2-electron 3-center bond or cap a polar face of the 
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cluster forming a 2-electron 4-center bond.  In either case, the electron associated with this extra 

hydrogen atom would be contributed to the cage bonding. Since B12H13 cluster is isoelectronic 

with B12H12
- it would require only one electron to satisfy the Wade-Mingos rule for stability. 

Consequently, the electron affinity of B12H13 cluster should be higher than that of a halogen 

atom, making it a candidate for a superhalogen. Similarly, consider the case of carboranes. These 

are created by replacing one or more of the B atoms with C.  For example, it is legitimate to 

expect that CB11H12 which is isoelectronic with B12H13, may also be a superhalogen. One can 

also imagine that M(B12H12) (M=Li, Na, K, Rb, Cs) clusters could be superhalogens since they 

are isoelectronic with CB11H12. However, there is a difference between CB11H12 and MB12H12. In 

the former, C replaces a B atom in the B12H12 polyhedron while in the latter, the alkali metal 

atom would donate an electron to the B12H12 moiety. Note that unlike conventional 

superhalogens where an alkali atom needs at least two halogen atoms, here only one B12H12 

moiety will be sufficient. 

 

To prove the above hypotheses we have carried out calculations using density functional theory 

and hybrid B3LYP functional for exchange-correlation.92,93 The predictive power of this 

theoretical method has already been demonstrated in previous publications.25,72 The electron 

affinities predicted are in good agreement with experiment. This method also compares well with 

coupled cluster calculations. For example, the EA of MnF calculated at the B3LYP/6-311+G 

(3df basis) level of theory is 1.34 eV which agrees well with the 1.13 eV value calculated at the 

RCCSD(T)/5-zeta basis.119 Moreover, in case of 4d and 5d transition metal atoms, it is found that 

density functional theory (using B3LYP) gives better performance than CCSD(T) in predicting 

electron affinities.120  
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In Figure 3, we show the geometries of neutral and anionic B12H12, B12H13, CB11H12, and 

Na(B12H12) clusters. The geometry of B12H12
- in Figure 3 (b) has D3d symmetry with B-B bond 

lengths ranging from 1.73 to 1.82 Å and all B-H bond lengths are around 1.19 Å. However, when 

the extra electron is removed, the neutral B12H12 cluster (Figure 3 (a)) undergoes significant 

structural distortion with two of the B-B bonds stretched to 2.00 Å and one of the H atoms bound 

to two B atoms instead of radially bonding to only one B atom. This, as will be discussed later, is 

reflected in the large difference between the electron affinity and vertical detachment energy of 

the B12H12 cluster. The geometries of neutral and anionic B12H13 clusters given in Figure 3 (c) 

and (d) are rather similar with only small differences in B-B bond lengths. They range from 1.75 

to 1.97 Å in the neutral cluster and 1.76 to 1.96Å in the anionic cluster. In both the structures the 

13th H atom is bonded on the face. When this H atom was placed on the bridge site, it moved 

readily to the surface site during optimization, indicating that the energy barrier is very small. 

These results are in agreement with previous calculations.118 The effect of the H atom capping a 

surface site will be apparent later when we discuss the electronic structure of these clusters.  
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Figure 3. Geometries (left) and NBO charge distributions (right) of (a) B12H12, (b) B12H12
-, (c) 

B12H13, (d) B12H13
-, (e) CB11H12, (f) CB11H12

-, (g) Na(B12H13) and (h) Na(B12H13)- 

 

The geometries of neutral and anionic CB11H12 clusters are given in Figure 3 (e) and (f) 

respectively. The anion is slightly more symmetric (C5 symmetry) than the neutral (C1 

symmetry). The nearest C-B distances in neutral and anionic CB11H12 clusters are respectively 
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1.70 Å and 1.71 Å. Both the structures have icosahedric form. The geometries of all M(B12H12) 

(M=Li, ,Na, K, Rb, and Cs) clusters are similar except the distance between the alkali metal atom 

and the nearest B atom. Therefore, we present in Figure 3 (g) and (h) only the geometries of 

neutral and anionic Na(B12H12). The distances between alkali metal atoms Li, Na, K, Rb, and Cs 

and the nearest B atom are, respectively, 2.20, 2.60, 2.99, 3.24 and 3.42 Å for neutrals and 2.14, 

2.52, 2.89, 3.12 and 3.28 Å for the anions. We note that the distances in anions are consistently 

smaller than those in the neutral clusters indicating that the bonding becomes stronger as an 

electron is attached. From the NBO charge distributions displayed in Figure 3 we see that, 

compared to the neutrals, the negative charge is more evenly distributed in the anions. In B12H12
- 

the negative charge rests evenly on all the B atoms and H atoms remain mostly charge neutral. 

This is to be expected as the bonding between radial H atom and B atom is covalent. In B12H13
- 

cluster which is isoelectronic with B12H12
2-

, the 13th H atom carries a positive charge of +0.270.  

This small charge donation makes the charge on the B and H atoms in B12H13
- more uniform than 

that in neutral B12H13. When a C atom is substituted for the B atom, the charge on the C atom in 

CB11H12 is -0.642. This is consistent with the fact that the electronegativity of C is larger than 

that of B. There are three kinds of B atoms in terms of their charge; those forming the pentagon 

closest to the C atom carry an average charge of -0.014/atom while those in the upper pentagon 

carry a charge of -0.117/atom. The B atom at the apex, however, carries a charge of +0.150. In 

the corresponding anion cluster the B atoms in the lower pentagon carry a charge of -0.002/atom 

while those in the upper pentagon carry a charge of -0.166/atom. The apical B has a charge of   -

0.141. We also note that the geometries of the B12H12 cage in neutral and anionic Na(B12H12) 

clusters are very similar to those in corresponding B12H13 cluster. This implies that the added 

hydrogen and alkali metal atoms behave in a similar manner, namely the electron donated by 
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these atoms is uniformly distributed over the remaining atoms. However, the charges on Li, Na, 

Rb, K, and Cs in both neutral and anionic M(B12H12) clusters are close to +1 while the charge on 

the 13th H atom in neutral and anionic B12H13 is +0.290 and +0.270, respectively. 

 

To further probe the effect of electron delocalization in the anions, we have calculated the 

electron affinities (EA) and vertical detachment energies (VDE) of these clusters (see Table 1). 

The former is calculated from the energy difference between the ground states of the anion and 

neutral while the later is calculated from the energy difference between the anion ground state 

and the neutral at the anion geometry. The difference between the EA and VDE, therefore, 

provides a measure of the relaxation the cluster undergoes when the electron is photo-detached 

from the anion. We note that B12H12 is already a superhalogen with electron affinity of 4.56 eV.  

The VDE of B12H12 is 1.2 eV larger than that of its EA.  This is a consequence of the large 

geometry change the anion undergoes when the extra electron is removed. The difference 

between the EA and VDE of the remaining clusters (B12H13, CB11H12 and MB12H12) is between 

0.4 to 0.5 eV. Although these are significantly smaller than the difference noted in B12H12, they 

represent structural distortion suffered by these clusters following electron detachment. The 

important point we wish to make is that all these clusters are superhalogens. Further, electron 

affinities decrease with increasing size of the alkali atom, a characteristic that can be related to 

the strength of bonding. 
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Table 1. Electron affinities (EA) and Vertical Detachment Energies (VDE) of superhalogen 
clusters of B12H12, B12H13, CB11H12, and M(B12H12) for (M=Li, Na, K, Rb, Cs). 

 

Cluster EA (eV) VDE (eV) 
B12H12 4.56 5.75 
B12H13 5.42 5.92 
CB11H12 5.39 5.82 
Li(B12H12) 4.75 5.19 
Na(B12H12) 4.43 4.92 
K(B12H12) 4.21 4.66 
Rb(B12H12) 4.01 4.44 
Cs(B12H12) 3.92 4.36 

 

Note that B12H13 and CB11H12 do not possess a single metal atom or a halogen, yet these have 

electron affinities larger than those of halogen atoms. We recall that BO2 which does not possess 

either a metal atom or a halogen atom is also a superhalogen with an electron affinity of 4.46 

eV.71 However, this superhalogen property arises due to the octet rule as BO2
- is isoelectronic 

with CO2. Furthermore, O is far more electronegative than H. The underlying reason for the 

stability of all the anions we have studied here is that this class of clusters needs an extra electron 

for cage bonding to satisfy the Wade-Mingos rule. 

 

5.1.3 Conclusions 

In summary, we have shown that Wade-Mingos rule provides another window for the design and 

synthesis of a new class of superhalogens with exceptionally high electron affinities. Equally 

important, we also show that it is not necessary for a molecule to contain either a metal atom or a 

halogen atom to be a superhalogen. Moreover, whereas at least two halogen ligands are required 

in a conventional superhalogen, here one borane moiety by itself is a superhalogen. Many borane 

and carborane derivatives with high electron affinities can be formed.  
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5.2 Pseudohalogen-based Superhalogens 

 

5.2.1 Introduction 

In this section, we consider a different class of electronegative moieties, called pseudohalogens, 

as building blocks of superhalogens. Like halogens, these molecules also need one electron to 

close their electronic shell, and form very stable singly charged negative ions. Thus, they mimic 

the chemistry of halogens.121 Pseudohalides are composed of two or more atoms and the nature 

of bonding between these atoms is not affected in chemical reactions where they resemble 

halogens. Typical examples of such moieties include CN, NCO, SCN, N3 etc. Due to the 

similarity in chemical reactivity with halogens, it can be expected that pseudohalogens can also 

be used as building blocks of superhalogens.  In a recent paper, Smuczynska and Skurski have 

shown that Li, Na, Be, Mg, Ca, B, and Al can be used as core atoms to form superhalogens with 

pseudohalogens as building blocks.77  

 

In our work, we have performed a systematic study of Au(CN)n complexes where n=1 to 6 and 

calculated their equilibrium structure, nature of bonding, and spectroscopic properties. We have 

chosen gold since it is a noble metal and because of the aurophilic interaction its chemistry is of 

interest to a vast range of disciplines. Moreover, gold has a high electronegativity and can have a 

range of oxidation states from -1 to +5, the +1 and +3 states being the most widely prevalent.122 

The oxidation state of +6, however, is highly debated.  Though Au has an oxidation state of +6 in 

AuF6 neutral, some argue that it will either soon transform to AuF6
- due to its large electron 

affinity or dissociate. We chose to study the interaction of CN (EA 3.82 eV)123 with Au since 

cyanide is the simplest pseudohalogen and gold cyanides have an extensive chemistry. In fact, 
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cyanidation is one of the major methods for extraction of gold from its ore in the form of water 

soluble Au(CN)2
- complex.124 Gold cyanides are also used in electroplating.125 The objectives of 

this work are twofold. First we demonstrate that noble metals like Au can also form 

superhalogens when decorated by CN ligands. Second, we study the extent to which the CN 

ligand mimics the halogen ligands with respect to its interaction with Au in forming 

superhalogens. For the first phase, we have done extensive calculations using density functional 

theory, and for the second we have compared our data with those available for AuFn 

complexes,25 which are traditional superhalogens. 

 

5.2.2 Computational Methods 

The total energies and geometries of the low lying isomers of both anions and corresponding 

neutral clusters were calculated using density functional theory (DFT) with hybrid functional 

B3LYP for exchange-correlation potential.92,93 To find the global minimum structure we have 

considered several initial geometries by attaching Au to N or C atom of CN as well as allowing 

CN molecules to cluster. In all cases, the structures were optimized within the given symmetry.  

 

The calculated energies of the optimized clusters are used to probe their spectroscopic properties. 

These results can be compared with photoelectron spectroscopy (PES) experiment. The vertical 

detachment energy (VDE) is the electron binding energy (EBE) corresponding to optimal 

Franck-Condon (FC) overlap between the ground state of the anion and the corresponding 

neutral at the structure of that anion, i.e., straight up or vertically from the anion's ground state.  

For an electronic transition, the VDE is taken as the EBE of the peak of that transition, i.e., the 

maximum FC overlap of the anion's and neutral's wave functions producing a maximum in 
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electron intensity.  Theoretically, it is calculated as the energy difference between the lowest 

energy isomer of the anion and its neutral at this anion geometry. The adiabatic electron affinity 

(EA), on the other hand, is the energy difference between the ground vibronic state of the lowest 

energy anion isomer and that of the corresponding lowest energy neutral isomer. It is the 

thermodynamic EA.  With vibrational spectral structure and an assignment, one can identify the 

transition in the vibronic envelope that corresponds to the EA. Without it, one is left to estimate 

its location near the low EBE side of the ground anion to ground neutral transition. With no 

vibrational hot bands, it is at the threshold, but the problem is that there are often some hot 

bands. The problem gets further complicated if the anion possesses energetically nearly 

degenerate isomers and/or if the geometries of the lowest energy anion and the lowest energy 

neutral isomers are very different. In the latter case, the neutral resulting from the photodetached 

anion will be in an electronically excited state. Its geometric structure may not be that of the 

geometric neutral isomer. What the experiment will then measure is not the EA, but what we 

term as the adiabatic detachment energy (ADE).   We define this ADE as the transition energy 

from the ground vibronic state of an anion to the ground vibronic state of the structurally similar 

neutral isomer. This is calculated by optimizing the neutral geometry by starting with the 

geometry of the ground state of the anion isomer. The resulting neutral structure clearly belongs 

to one of the local minima on the potential energy surface. The geometry of the lowest energy 

neutral isomer, as mentioned before, is determined by starting from different initial structures 

and optimizing the geometry. This indeed is one of the hardest quantities to calculate since there 

may be numerous local minima on the potential energy surface. Several techniques such as 

genetic algorithm and basin hopping methods have been developed to make this task easier. 

However, geometries lying within 0.2 eV of each other are often referred to as nearly degenerate 
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as this is beyond the accuracies of current computations. We will illustrate the distinction 

between EA and ADE in the following.  

 

5.2.3 Results and Discussions 

 

5.2.3.1 Au(CN)n (n=1-6) Superhalogens  

First we have considered the dissociative attachment of CN ligands with Au, that is, attachment 

of CN without association into (CN)n. Since CN is a well known ambident ligand, it can attach 

with gold in two possible ways. It can either form gold cyanide clusters in which C atom of CN 

is bonded with Au (AuCN) or it can form gold isocyanide cluster where the N end of CN is 

bonded with Au (AuNC). For all the cases studied, we have found that gold cyanides (AuCN) are 

lower in energy than their isomeric gold isocyanide clusters (AuNC). All these structures are 

similar in geometry to the corresponding AuFn clusters.25 Furthermore, analogous to AuFn 

clusters, Au(CN)n clusters have lowest energy for minimum spin multiplicities, i.e. species with 

odd number of electrons prefer to be doublet while species with even number of electrons prefer 

to be singlet. This is expected since CN- is known to be a strong field ligand according to the 

spectrochemical series.126 
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Figure 4. Optimized structures (left) and natural bond orbital (NBO) charge distribution (right) 
of Au(CN)n neutral complexes.  

Yellow represents Au, blue represents N and grey represents C.  
 

In Figure 4, we present the geometries and charge distributions of neutral Au(CN)n clusters. The 

Au-C bond length lies between 1.94 Å and 2.05 Å. The C-N bond length is about 1.16 Å in each 
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case which is same as that in a free CN moiety. This means that the nature of the C-N bond is not 

affected when the CN ligand binds with Au as should be the case for a true pseudohalogen. 

AuCN is linear. Au(CN)2 is pseudolinear and slightly trans in geometry, the Au-C-N angle being 

about 175˚ and the C-Au-C angle being about 180˚. The Au-C bond lengths are 1.99 Å. An 

earlier calculation at the PW91/TZ2P level using density functional theory indicates that neutral 

Au(CN)2 is linear.127 When we forced the molecule to be linear, the total energy of the molecule 

was 0.09 eV greater. This is within the errors associated with DFT level theories. However, it is 

known that different levels of theory may result in different optimized structures. Au(CN)3 is T-

shaped with C2v symmetry where all the Au-C bonds are not equivalent. The Au-C bond length 

between the Au atom and the CN ligands which form the head of the T is about 2.01 Å whereas, 

the Au-C bond length for the CN ligand attached perpendicular to the head is 1.94 Å signifying 

that this bond is stronger. Au(CN)4 is planar with a D2h symmetry and all bond lengths are about 

2.02 Å. One pair of C-Au-C angle is about 80˚ while the other pair is about 100˚.  Au(CN)5 has 

C4v symmetry. Here, four of the CN ligands lie in the same plane as Au and one CN ligand is 

perpendicular to this plane. As in case of Au(CN)3, there are two kinds of Au-C bonds. The Au-

C bonds between the Au and the CN in the same plane are all equivalent and about 2.03 Å 

whereas the remaining Au-C bond length is 1.98 Å.  Au(CN)6 has D3d symmetry and all the Au-

C bonds are equivalent with a bond length of 2.05 Å. As indicated in section 5.2.2, we have used 

tolerance level of 0.1 in assigning cluster symmetry. Note that this assignment may vary 

depending upon the tolerance level chosen. For example, if this tolerance level is increased to 

0.6, the symmetries of Au(CN)4 and Au(CN)6 are respectively  D4h and Oh. 
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Figure 5. Optimized structures (left) and NBO charge distribution (right) of Au(CN)n
- complexes 
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The anionic clusters shown in Figure 5 have similar geometry as that of the neutrals. This is 

reflected in the small difference between the calculated vertical detachment energies (VDE) and 

the adiabatic detachment energies (ADE) as discussed below. The average C-N bond distance is 

1.16 Å as in the case of the neutrals. However, the Au-C distances are slightly longer compared 

to those in the neutrals and lie between 2.02 Å and 2.26 Å. The symmetries of Au(CN)n are Cinfv, 

Dinfh, C2v, D4h, C4v and C4h for n=1 to 6, respectively. These are the lowest energy structures for 

dissociative attachment of CN. 

 

Table 2. Theoretical and experimental ADE and VDE of Au(CN)n complexes for dissociative 
attachment of CN ligands. 

 

Complex ADE (eV) VDE (eV) 
Theo Expt Theo Expt 

AuCN 2.12 2.07128 2.25 2.19128 
Au(CN)2 6.08 6.09127 6.10 6.09127 
Au(CN)3 5.07 - 5.44 - 
Au(CN)4 7.61 - 7.95 - 
Au(CN)5 7.02 - 7.45 - 
Au(CN)6 8.40 - 8.48 - 

 

The adiabatic detachment energies (ADE) and vertical detachment energies (VDE) of the 

complexes were computed. ADE provides a measure of the stability of the anion over the neutral 

and its electron accepting capacity. The ADE and the VDE values are given above in Table 2 and 

compared with available experimental data. Note that the ADE of Au(CN)2 is almost a factor of 

3 larger than that of AuCN and a factor 2 larger than that of Cl. Hence, it is a superhalogen. 

These results are in excellent agreement with previous theoretical and experimental data.127 The 

ADEs of clusters for n ≥ 3 are more than twice the electron affinity of Cl and reach values as 

high as 8.4 eV in Au(CN)6. This indicates that these Au(CN)n complexes are indeed 
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superhalogens. We also note that Smuczynska and Skurski recently studied Na(CN)2, Mg(CN)3, 

and Al(CN)4 and found these to be superhalogens as well.77 

 

The difference between the ADE and VDE is a measure of the geometry change of the anion 

when the electron is removed. The small magnitude of this (between 0.02 eV and 0.43 eV) 

signifies that the neutrals and anions studied here are analogous in symmetry and structure as is 

evidenced from Figure 4 and Figure 5. 

 

From the above data we observe that very high ADEs, much higher than that of Cl, are obtained. 

These values are comparable with those of corresponding AuFn complexes (2.46 eV to 8.38 eV 

for n=1 to 6).25 We further notice that there is an odd-even alternation in the electron affinities. 

When n is odd, the ADE is low and when n is even the ADE is high. The explanation is simple. 

For odd n, the neutrals have even number of electrons and closed shell. Thus, the ADE is 

comparatively small when an extra electron is added. When n is even, the neutrals have odd 

number of electrons and open shell. Since their anions have even number of electrons and closed 

shell, energies are lowered when the electron is attached. This increases their ADE values.  
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Figure 6. NBO charge on Au in (a) AuFn and (b) Au(CN)n complexes 

 

To understand the nature of bonding we also calculated the NBO charges [q(e)] on the Au atom 

in both the neutral and the anionic structures (see Figure 4 and Figure 5). The results are plotted 

in Figure 6 and compared with that in AuFn clusters. As we can see, gold is positively charged in 

all the neutral clusters and all the anionic clusters except in AuCN-. CN, due to its high electron 

affinity, withdraws electron density from Au, thus rendering it a positive charge in the clusters. 

However, AuCN is a small closed shell molecule. Thus, on addition, the extra electron in AuCN- 

is delocalized over all the three atoms. This process is further facilitated since Au, though a 
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metal, has quite a high electronegativity. In fact, the closed shell nature of AuCN explains why 

its ADE is low. The charge on the Au atom increases with the number of ligands in both the 

neutral and anionic clusters. However, the difference between the charges gets smaller as the 

number of ligand atoms increases and becomes vanishingly small at n=4. This is to be expected 

when one considers the oxidation state of Au to be +3. In Au(CN)4
-, the extra electron is 

distributed over the CN moieties and hence charge on Au is same as that in neutral Au(CN)4. The 

charge distribution in Au(CN)n compares well with that in AuFn, although the magnitudes are 

different. This shows that as long as CN moieties are bound to Au dissociatively, the 

pseudohalogen behaves like a halogen. Moreover, we see that the charges on Au are greater 

when F is attached than when CN is attached. It should also be mentioned that the small NBO 

charges on Au in AuCN and Au(CN)2
- establishes the covalent nature of the Au-C bond 

corroborating earlier experimental work.127,128  

 

5.2.3.2 Stability with respect to fragmentation  

Since all the molecules studied above have no imaginary frequencies, they at least belong to 

minima on the potential energy surface. However, to test their stability against fragmentation, we 

have considered several dissociation pathways of structures given in Figure 4 and Figure 5. Here, 

the neutral clusters can fragment by ejecting a CN or (CN)2. In the case of anions, we also have 

to consider whether the charge is carried by the CN or the Au(CN)n moiety. In Table 3, we list 

the dissociation energies corresponding to the most thermodynamically preferred channel. When 

dissociation energy is positive, fragmentation will be endothermic implying that the parent 

cluster is stable. Both AuCN and AuCN- are stable. However, Au(CN)n complexes are unstable 

with respect to dissociation for n>1 in case of neutrals and n>3 in case of anions. This is in stark 
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contrast with AuFn complexes which are stable with respect to dissociation up to n=5 for neutrals 

and n=6 for anions.25 This difference arises because of the difference in the F-F bond energy in 

F2 molecule and C-C bond energy in cyanogen gas (NCCN). The binding energy of (CN)2 

(NCCN), namely 5.84 eV,123  is about 3.5 times the binding energy of F2, namely 1.82 eV.129 

Moreover the Au-F bond energy (2.65 eV)25 > F-F bond energy (1.82 eV) whereas, the Au-CN 

bond energy (3.65 eV) < NC-CN bond energy (5.84 eV). Hence, CN would preferentially bind to 

itself than with Au whereas F would preferentially bind to Au than with itself. Similarly 

Au(CN)n
- are less stable against fragmentation than  corresponding AuFn

-.  

 

Table 3. Fragmentation energies for neutral and anionic Au(CN)n clusters 

Complex 
(A) 

Preferred 
fragmentation  
product (B) 

Fragmentation 
energy/eV 

(Energy of B-
A) 

AuCN 
AuCN- 

Au+CN 
Au+CN- 

3.65 
1.70 

Au(CN)2 
Au(CN)2

- 
Au+(CN)2 
Au-+(CN)2 

-0.49 
3.39 

Au(CN)3 
Au(CN)3

- 
AuCN+(CN)2            
AuCN-+(CN)2 

-1.42 
1.53 

Au(CN)4 
Au(CN)4

- 
Au+2(CN)2            

Au(CN)2
-+(CN)2 

-2.44 
-0.42 

Au(CN)5 
Au(CN)5

- 
AuCN+2(CN)2 

Au(CN)3
-+(CN)2 

-5.02 
-1.65 

Au(CN)6 
Au(CN)6

- 
Au+3(CN)2                   

Au(CN)2
-+2(CN)2 

-6.32 
-3.50 

 

This brings us to examine the case of Au(CN)2 more closely. We note from Table 3 that while 

neutral Au(CN)2 is unstable and fragments to Au and NCCN, its anionic counterpart is stable. 

The question then arises: What prevents the neutral following electron detachment of the anion 

to remain in the metastable state?  To gain further insight we have calculated the energy barrier 
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between the metastable and dissociated lower energy state by keeping the C-Au-C fixed at a 

particular angle and optimizing all other parameters. Partial geometry optimizations were carried 

out by varying the C-Au-C angle from 30º to 180˚ in 10º increments. This simple procedure 

gave us the potential energy diagram for fragmentation (Figure 7). We also calculated the 

structure and energy of the transition state. The difference in the energy of the TS and Au(CN)2 

gave the barrier height. This energy barrier is 1.86 eV which is substantial indicating that though 

Au(CN)2 is metastable, it has a long lifetime. In this connection, it should also be mentioned that 

fragmentation through other pathways such as Au(CN)2→AuCN+CN are thermodynamically 

unlikely, as in this case the energy of the fragmented products is 2.12 eV higher than that of 

Au(CN)2. This is even higher than the energy barrier for fragmentation into Au+(CN)2.  

 

 

Figure 7. Calculation of energy barrier for the fragmentation of Au(CN)2 to Au and (CN)2 
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Note that Wang et al.127 probed the nature of bonding in Au(CN)2
- using PES and found the 

spectrum to be quite narrow indicating that the anion and neutral have similar geometries. We 

want to emphasize that what Wang et al. measured is the adiabatic detachment energy (ADE) 

which should not be confused with the electron affinity (EA).   

 

5.2.3.3 More stable isomers and the importance of metastability 

Since neutral Au(CN)2 structure shown in Figure 4 is not the global minimum and clusters with 

larger CN concentration are metastable, we searched for lower energy isomers where CN 

molecules may dimerize to form (CN)2 or trimerize to form (CN)3. We concentrated our search 

only on Au(CN)3 and Au(CN)4 where strong bonding is observed. We have not considered van 

der Waals type clusters in which cyanogen gas molecules can also dimerize to form (CN)4 and 

then interact with Au.  

 

First, we determined the minimum energy structures of (CN)n for n=2 and 3. This gave an 

indication of the relative C-C, C-N and N-C bond strengths in the (CN)n moieties and 

accordingly we proceeded in our search for lowest energy Au(CN)n structures. The geometries of 

some isomers of (CN)2 and (CN)3 are given in Figure 5. It is to be noted that all the structures 

were found to have no imaginary frequencies indicating they are dynamically stable. In case of 

neutral (CN)2, we found that cyanogen (NCCN) has lower energy than isocyanogen (NCNC), 

which in turn, has lower energy than and diisocyanogen (CNNC). This indicates that when 

cyanide binds with gold after dimerization, it will preferentially attach as NCCN moiety. The N-

C bond lengths are 1.16 Å and the C-C bond length is 1.38 Å. In case of (CN)2
-, we found that 

again, NCCN- with C2h symmetry has the lowest energy. The N-C bond lengths increase to 1.20 
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Å and the C-C bond length remains at 1.38 Å. Our results agree with previous reports.130-132 We 

found several isomers for (CN)3, some of which are shown in Figure 5. Of these, the NCNCCN 

structure with Cs symmetry has the lowest energy, in both neutral and anionic forms. Here, a 

cyanide moiety is attached to the cyanogen molecule. The energies of the different isomers 

relative to the ground state (∆E) isomers are listed in Figure 8. ∆E is defined as the energy of the 

converged structure minus the energy of the lowest energy structure.  

 

With these results in mind, we proceeded to the investigation of lower energy structures of 

Au(CN)n clusters. We expected that structures where (CN)2 and (CN)3 attach as NCCN and 

CNNCCN respectively, will have lower energy. We did not find any energetically lower isomers 

of AuCN and Au(CN)2 than those given in Figure 4 and Figure 5.  However, for Au(CN)3, 

Au(CN)3
- and Au(CN)4 we were able to find lower energy structures, in accordance with our 

expectations. These are shown in Figure 9. The energies of these structures are lower from those 

given in Figure 4 and Figure 5 by 2.69, 0.08 and 2.97 eV, respectively. No structures of 

Au(CN)4
- with energies lower than that shown in Figure 5 was found. 
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Figure 8. (a)-(c) Some low energy isomers of (CN)2; (d)-(g) Some low energy isomers of (CN)3 
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Figure 9. Ground state geometries of Au(CN)3, Au(CN)3
- and Au(CN)4 

 

Neutral Au(CN)3 is linear with Cinfv symmetry. The Au-C bond length is 1.96 Å which is slightly 

longer than that in AuCN (1.94 Å). The N-Au bond length is 2.04 Å signifying that this bond is 

much weaker. The structure of Au(CN)3
- is quite different. The Au-C bond length is 1.98 Å and 

the Au-C-N atoms lie in a plane. However, the (CN)2 moiety on the other side has a slight trans 

nature with the Au-N bond length of 2.04 Å. Considering Au to be in +1 oxidation state, we see 

that AuCN has a closed shell. Hence, most of the negative charge (-0.755) in NCAuNCCN- goes 

to the (CN)2 moiety and thus its structure is similar to that of free NCCN-. Moreover, the 

difference between VDE and ADE (which is also the EA in this case) of NCAuNCCN- is 0.82 

eV which is equal to the VDE of NCCN-. We note that the Au(CN)3
- isomer in Figure 9 is only 

0.08 eV lower in energy than that in Figure 5 where CN moieties bind dissociatively. This 

energy difference is less than the accuracy of DFT methods and hence the two geometries are 

nearly degenerate.  

 

Neutral Au(CN)4 has C2v symmetry with two linear cyanogen groups in a cis conformation, the 

C-N-Au angles being 159˚ each and the N-Au-N angle being about 180˚. The Au-N bond length 
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is 1.98 Å. It is interesting to note that while their isomers in which CN molecules have attached 

to Au dissociatively are unstable with respect to fragmentation, these lower energy structures are 

all stable and also have no imaginary frequencies. The fragmentation energies of the lower 

energy structures along the same path as for the metastable ones are 1.26 eV, 1.60 eV and 0.53 

eV for Au(CN)3, Au(CN)3
- and Au(CN)4 respectively.  

 

 

Figure 10. Some higher energy structures of Au(CN)3, Au(CN)3
-, Au(CN)4 and Au(CN)4

- 

 

We also found several energetically higher structures for these three complexes. These were 

obtained by permutations of the relative positions of the C and N atoms with respect to gold. 

Some of the structures are shown below in Figure 10. Optimization of Au(CN)4
-, starting with 

different initial configurations led to structures all of which have higher energies than the 
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structure in Figure 5 (d). However, these structures are also dynamically stable and belong to 

local minima on the potential energy surface. The energies of the higher energy structures 

relative to the ground state (∆E) are incorporated in Figure 10. Beyond this limit, cyanogen 

dimerization sets in. 

 

This suggests that what will be observed experimentally may depend on the initial reaction 

conditions. In gas phase synthesis of gold cyanide clusters, if the vapor pressure of CN 

molecules is low, the most likely products will have the structures shown in Figure 4 and Figure 

5. This is because reaction occurs when two species collide with each other. Lower CN vapor 

pressure minimizes the chances of CN-CN collisions. On the contrary, if the vapor pressure of 

CN is high, structures as shown in Figure 9 may form. However, it is likely that in both cases a 

mixture of isomeric products may exist. 

 

Our results also lead us to the important conclusion that there is a difference between the electron 

affinity (EA) and the adiabatic detachment energy (ADE). In fact, the EA of Au(CN)3 is the 

energy difference between structures (a) and (b) in Figure 9 which is 2.46 eV. The energy 

difference between the structures in Figure 4 (c) and Figure 5 (c) is simply the ADE. From 

Figure 9, we see that Au(CN)3 can be considered to be composed of a pseudo closed-shell 

dipolar AuCN moiety which binds to the pseudo closed-shell (CN)2 moiety by inducing a dipole 

moment in it. This explains the low value of EA. The VDE is 3.28 eV. Similarly, the EA of 

Au(CN)4 is 4.64 eV, the energy difference between the structures in Figure 5 (d) and Figure 9 

(c). The VDE is 7.95 eV as tabulated in Table 2. The large difference of 3.3 eV between the EA 

and VDE accounts for the fact that the geometries of the neutral and the anion are drastically 
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different in this case. Since we note that there is a substantial difference between the lowest 

energy structure of the neutral and the lowest energy structure of the anion in several cases, one 

has to be careful while assigning a value to EA experimentally. If the structures shown in Figure 

4 and Figure 5 are relevant to experimental conditions, one would measure ADE as the transition 

energy from the anion’s ground state to the ground state of the structurally similar neutral 

isomer. We earlier demonstrated this to be the case for Au(CN)2. Experimental studies of larger 

Au(CN)n complexes will be very useful.  

 

A very important realization that we make from our data is that, to exhibit superhalogen behavior 

it is essential that the CN moieties attach dissociatively with Au so that effective electron 

delocalization can take place. Most of the structures studied are metastable and their fragmented 

counterparts are lower in energy. However, to exploit the superhalogen properties of these 

clusters, it is these metastable clusters that are important. Experiments can tell us if the formation 

of Au(CN)n clusters will be driven kinetically or thermodynamically and if the spectroscopic 

properties carry the signature of metastable states. 

 

5.2.3.4 A closer look at Au(CN)3 

We note an unusual property of Au(CN)3: Its anion is found to possess two energetically nearly 

degenerate isomers that are only 0.08 eV apart, while the resulting neutral isomers lie 2.69 eV 

apart. In addition, the anion isomers have strikingly different spectroscopic properties. The 

vertical detachment energy (VDE) of one isomer is 5.44 eV while it is only 3.28 eV for the other.  

In the former isomer the Au atom is attached to three individual CN ligands in a T-shaped 

configuration while in the latter isomer Au binds to cyanogen (NCCN) and a separate CN 
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moiety. The vast difference in the VDE arises because the stabilities of the two anion isomers are 

governed by very different mechanisms. The former isomer is stabilized by its superhalogen 

behavior while the latter draws its stability from the unusually large binding energy of cyanogen. 

Following electron detachment, the degeneracy in the corresponding neutrals is lifted as the 

anions relax towards their nearest equilibrium configuration. In spite of the large energy 

difference (2.69 eV) between the two neutral isomers, the photoelectron spectra resulting from 

these anion isomers are expected to be sharp. This is because chemical bonds need to break for 

the higher energy neutral isomer to reach its ground state structure and this would involve 

crossing large energy barriers. Photoelectron spectroscopy experiments should be able to verify 

these predictions. 

 

It is well known that structure and properties of matter are intertwined and a fundamental 

understanding of these relationships is important for the synthesis of nanomaterials with tailored 

properties. Clusters are the ultimate nanoparticles where every atom and every electron count. 

Unfortunately, there are no current experimental techniques that can unambiguously determine 

the structures of clusters without the benefit of theoretical input. This becomes an even more 

difficult task when the energy differences between the nearly degenerate isomers are beyond the 

accuracy of theoretical methods. We find Au(CN)3 to be a unique example of such a cluster 

where photoelectron spectra in combination with theory can unmistakably distinguish between 

the nearly degenerate anion isomers.  Due to this interesting property of Au(CN)3 we have 

further investigated it. 
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To obtain the ground state geometry of Au(CN)3 anion, we used 22  initial structures where CN 

moieties are bound to a Au atom either individually or in dimerized/trimerized form. In the 

former case Au has a choice to bind to either C or N. For the later configurations the choices are 

more complex since (CN)2 and (CN)3 can have many isomers of their own.130-132 For the 

dimerized configuration we used NC-Au-NCCN, NC-Au-NCNC, NC-Au-CNCN, NC-Au-

CNNC as well as CN-Au-NCCN, CN-Au-NCNC, CN-Au-CNCN, and CN-Au-CNNC. Similarly, 

there are also a number of ways (CN)3 can attach to Au and one such example is Au-NCCNCN. 

All the different isomers for the various different ways of attachment of CN with Au are shown 

in Figure S1, S2 and S3. For each configuration the geometries were fully optimized without any 

symmetry constraint. The convergence in total energy and forces was set to 1x10-6 eV and 1x10-2 

eV/Å, respectively. The geometries of the neutral clusters were obtained by using anion 

geometries as starting points and optimizing the geometries following electron detachment with 

the same constraints outlined above.  

 

In Figure 11, we show the geometries of the low lying isomers of Au(CN)3 for different modes of 

CN attachment. We begin with the geometries of the Au(CN)3
-. The ground state geometry has 

NC-Au-NCCN configuration. Here two of the CN moieties dimerize and bind to Au while the 

third CN moiety binds to Au on the opposite side with C pointing towards Au. The structure has 

a pseudo-linear form with the NCCN moiety having a bent structure. We note that this has the 

same form as (CN)2
-. Au exists in the oxidation state of +1 and the added electron is distributed 

over the cyanogen (NCCN) moiety. The next higher energy structure lying only 0.08 eV above 

the ground state has three CN moieties attached to Au separately. In this configuration Au has an 

oxidation state of +2. With the extra electron in the anion, there are enough electrons to break the 
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NC-CN bond. The near degeneracy of these two structures results from separate mechanisms. 

The stability of the ground state structure arises because the binding energy of (CN)2 is 5.84 

eV.123 The stability of the next higher energy structure arises because the extra electron is 

distributed over three CN moieties and hence leads to high binding energy, namely 5.07 eV. 

Thus, this isomer behaves as a superhalogen. Calculations indicate both the isomers are stable 

with respect to fragmentation into AuCN- and NCCN (see Table 3). Furthermore, we note that 

the lowest energy structure where trimerized form of (CN)3 attaches to the Au atom is 

significantly higher in energy than the isomers discussed above. 

 

 

Figure 11. Geometries of low lying isomers of anionic (left) and neutral (right) Au(CN)3 isomers 
[(a)-(d)]. 

The bond lengths are in Å. The energies are measured with respect to the ground states of the 
anion and neutral in (a). Blue represents N, grey represents C and yellow represents Au. 
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Next we discuss the geometries of the neutral isomers. Here, the ground state is a linear chain 

with Au bonded to C of CN and N of NCCN moieties. The oxidation state of Au is +2 and the 

stability of the structure is due to the large binding energy of cyanogen (NCCN). The structure 

where the CN moieties bind separately is 2.69 eV higher in energy than the ground state. Here 

Au exists in +3 oxidation state, but the cluster does not gain the same energy it did in the anion 

due to distribution of the added electron over all the three ligands. Hence, we see that while the 

linear isomer is bound against fragmentation into AuCN and NCCN (by 1.26 eV), the T-shaped 

neutral isomer is not (by 1.42 eV). However, there are other linear structures of Au(CN)3 whose 

energies are closer to the ground state. Here (CN)2 binds either as CNCN and NCCN or CNNC. 

Once again, Au bound to (CN)3 namely Au-NCCNCN has much higher energy.  

 

To confirm the validity of our results, we have repeated the calculations for ADE and VDE for 

the two nearly degenerate Au(CN)3
- anions at different levels of theory to study the effect of 

changing method as well as basis set. The results are given below in Table 4. At the B3LYP level 

we used LANL2DZ133 and SDD pseudopotentials99,100 for Au and 6-311+G*97,98 and aug-cc-

pVTZ basis sets for C and N. At the B3PW9191,92 and M06134 levels we used SDD basis set for 

Au (as it is superior to LANL2DZ) and aug-cc-pVTZ135 for C and N. As can be seen, the ADE 

and VDE values lie within 0.2 eV of each other for the different methods and different basis sets 

tested here. This is within the error limit associated with these calculations. We did not include 

corrections for zero-point vibrational energy or basis set superposition error as these do not 

significantly alter the ADE and VDE. In all cases, geometries were optimized. The energy 

difference between the isomers varied between 2.56-2.91 eV for the neutral and 0.05-0.22 eV for 

the anion depending on the theoretical method used, the energy being lower for the isomers 



www.manaraa.com

 
 

69 
 

where CN moieties were dimerized. For extensive calculations we have chosen the B3LYP92,93 

hybrid functional with SDD basis99,100 for Au and 6-311+G* basis for C and N since this method 

has been found to provide results very close to experimental values particularly for gold cyanide 

clusters. For example, the ADE and VDE of AuCN- predicted using this method are 2.12 eV and 

2.25 eV respectively which matches very well with the experimentally determined values (2.07 

eV and 2.19 eV respectively).127,128 UCCSD(T) calculations done using aug-cc-pVTZ basis set 

for C and N and aug-cc-pVTZ-pp basis for Au predict these values to be 1.97 eV and 2.08 eV 

respectively.128  Similarly, the calculated VDE value for Au(CN)2
- using the above B3LYP level 

of theory is 6.10 eV. This also compares very well with the CASSCF/CCSD(T) value of 6.02 eV, 

and experimental value of 6.09 eV, respectively.127 Therefore, to save computation time, we have 

not performed CCSD(T) calculations for the  Au(CN)3 complexes . 

 

Table 4. ADE and VDE of the two lowest energy Au(CN)3
- clusters calculated at different 

theoretical levels 
 

 

One of the ideal experiments to probe the electronic properties of clusters is the photoelectron 

spectroscopy (PES). Here, a mass isolated anion is interjected with a fixed frequency laser and 

the energy of the photo-ejected electron is measured. The resulting PES carries information on 

the vertical and adiabatic detachment energies as well as electron affinity. In fact, several 

Cluster 

Method B3LYP B3PW91 M06 

Basis 
Au SDD LANL2DZ SDD SDD 
C,
N 6-311+G* aug-cc-

pvtz 6-311+G* aug-cc-
pvtz 

aug-cc-
pvtz 

aug-cc-
pvtz 

Au(CN)3
- ADE 5.07 5.00 5.07 4.99 4.91 4.89 

VDE 5.44 5.41 5.47 5.36 5.26 5.29 
        

NC-Au-
NCCN- 

ADE 2.46 2.40 2.44 2.40 2.42 2.20 
VDE 3.28 3.20 3.26 3.19 3.16 2.79 
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superhalogens have been studied using PES experiments and VDEs as large as about 7 eV have 

been measured.23,127 In anion clusters that do not possess nearly degenerate isomers, 

interpretation of the PES is simple.  Sharp spectra correspond to the geometry of the neutral that 

is very similar to that of its anion. Broad spectra, on the other hand, reflect the fact that the 

neutral and anion ground state geometries are significantly different. In the event that nearly 

degenerate isomers of the anion exist, interpretation of the PES becomes complex, particularly if 

the isomers have very different geometries.  This is the case here.  The VDE and ADE of the 

isomer in Figure 11(a) yields 3.28 eV and 2.46 eV, respectively while those corresponding to 

Figure 11 (b) the energies are 5.44eV and 5.07 eV. Since the geometries of the anions and the 

corresponding neutrals in Figure 11 (a) and (b) are similar, the PES spectra of both the isomers 

are expected to be sharp. Going from the anion geometry in Figure 11 (a) to the neutral geometry 

in  Figure 11 (b) or from the anion geometry in Figure 11 (b) to neutral geometry in Figure 11 (a) 

will be difficult as it would require breaking chemical bonds and hence encountering large 

energy barriers.  

 

The PES contains more information than just the VDE, ADE and EA. The many peaks in the 

spectrum reflect the density of states of the neutral cluster. These are commonly studied in theory 

by broadening the discrete molecular orbital energy levels. Since most calculations are carried 

out by using density functional theory one should recall that single particle energy levels in DFT 

do not have any formal meaning. Consequently, Gutsev et al. had suggested a different procedure 

where more information can be gleaned from DFT calculations to compare with PES 

experiment.136 This deals with energy gaps between the two lowest peaks in the PES. 
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Note that when an electron is removed from an anion with spin multiplicity M, the corresponding 

spin multiplicity of the neutral can be either M+1 or M-1, depending upon whether the electron 

is removed from the spin-down or spin-up state.  The difference between these two energies 

yields the energy separation between the two lowest peaks in the PES. In Figure 12, we provide 

the vertical detachment energies associated with the two nearly degenerate isomers from the 

doublet spin state to the singlet and triplet states of the corresponding neutrals. These would 

correspond to the two low energy peaks in the PES and provide further data against which 

experiment can be compared.  

 

Figure 12. Vertical detachment energies of the two nearly degenerate Au(CN)3
- anions 

 

5.2.4 Conclusions 

Our systematic study of Au(CN)n clusters shows several important results. (1) The calculated 

vertical and adiabatic detachment energies of AuCN and Au(CN)2 agree with previous 

experiments.127,128 However, we show that neutral Au(CN)2 is metastable and PES study only 
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yields the adiabatic detachment energy and not the electron affinity as initially believed. (2) Our 

result confirms the earlier observation77 that pseudohalogens can be used to build superhalogens. 

However, in our study we show that large electron affinities can be attained without changing the 

identities of the reactant molecules, simply by tuning the number of ligands allowed to interact 

with the central metal atom. Moreover, we observe a fundamental difference between how the 

halogens and pseudohalogens lead to the formation of superhalogens. For example AuFn forms 

superhalogens up to n=6.25 Pseudohalogens can do the same if experimental conditions are such 

that they bind individually to the metal atom. (3) The reaction of halogens and pseudohalogens 

with a metal atom is different which arises due to the fact that pseudohalogens can dimerize 

more easily due to their large binding energy.   (4) It is to be noted that for superhalogen 

behavior, it is essential to have ligands attaching dissociatively rather than after dimerization. 

This is demonstrated for Au(CN)3 whose electron affinity corresponding to the lowest energy 

anion isomer is 2.46 eV while for its isomer in Figure 9, the adiabatic detachment energy is 5.07 

eV. Therefore, as per the definition of electron affinity, Au(CN)3 is not a superhalogen!  This is 

in sharp contrast with AuF3 which is a superhalogen with an electron affinity of 5.15 eV. Thus, 

even if pseudohalogens mimic the chemistry of halogens, they may not form superhalogens the 

same way halogens do. This is the limitation! Hence, we see that the possible existence of 

metastable isomers can make the task of experimental determination of electron affinity difficult. 

In such cases, there may be a discrepancy between the electron affinity and the adiabatic 

detachment energy of a species and theoretical work is essential.  We hope our work will provide 

direction in the synthesis of new superhalogens and in a fundamental understanding of their 

behavior. 
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Chapter 6 Applications of Superhalogens 
 
 
 
6.1 Salts and Hyperhalogens 

 

6.1.1 Introduction 

For practical applications of superhalogens, it is important that they can be used as building 

blocks of materials. To be a superhalogen and a strong oxidizing agent, not only does its electron 

affinity have to be larger than those of halogen atoms, but like halogens, the cluster should also 

form ionic bond reminiscent of salts. Since these are closed shells, their electron affinities should 

also be very small.  To confirm that superhalogens based on the Wade-Mingo’s rule can be 

utilized to form salts, we have calculated the equilibrium structures and total energies of neutral 

and anionic M(B12H13) and M(CB11H12) (M=Li, Na, K, Rb, and Cs) clusters. Moreover, we have 

investigated if these superhalogens could also be used to build hyperhalogens. Hyperhalogens 

constitute another class of highly electronegative species which was discovered recently.72 They 

are created when a metal atom is decorated with superhalogen moieties just as conventional 

superhalogens are created when a metal atom is surrounded with halogen atoms. The electron 

affinities of hyperhalogens are, therefore, larger than their superhalogen building blocks. Our 

results are discussed in the following sections. 
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6.1.2 Results and Discussion 

 

6.1.2.1 Salts 

The geometries for all these clusters are similar and hence we only show the geometries and 

NBO charges of neutral and anionic Na(B12H13) and Na(CB11H12) in Figure 13. The shortest M-

B distance increases gradually from Li to Cs. For M(B12H13) (M=Li, Na, K, Rb and Cs) clusters, 

these are 2.19, 2.59, 3.00, 3.24 and 3.43 Å for the neutrals and 2.42, 2.99, 3.32, 3.63 and 3.81 Å 

for the anions, respectively.  For M(CB11H12) (M=Li, Na, K, Rb and Cs) clusters, the shortest M-

B distances are 2.20, 2.59, 2.99, 3.24 and 3.43 Å for the neutrals and 2.42, 2.97, 3.31, 3.63 and 

3.79 Ǻ for the anions,  respectively.  These distances are larger in negative ions than in neutrals. 

 

It is to be noted that the neutral M(B12H13) and M(CB11H12) are ionic just like metal halide salts 

since the NBO charge on the metal atom is almost +1 (ranging from 0.898 for Li to 1.002 for 

Cs). The vertical detachment energies and electron affinities are given in Table 5.  We see that 

electron affinities of B12H13 and CB11H12 superhalogens are reduced to nearly 1 eV when 

attached to an alkali atom.  
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Figure 13. Geometries (left) and NBO charge distributions (right) of (a) Na(B12H13), (b) 
Na(B12H13)-, (c) Na(CB11H12) and (d) Na(CB11H12)- 

 

Table 5. Electron affinities and Vertical Detachment Energies of closed-shell clusters of 
M(B12H13) and M(CB11H12)  and hyperhalogen clusters of M(B12H13)2  and M(CB11H12)2  (M=Li, 

Na, K, Rb, Cs). 
 

Cluster EA 
(eV) 

VDE 
(eV) 

Cluster EA 
(eV) 

VDE 
(eV) 

Li(B12H13) 0.91 1.07 Li(B12H13)2 6.55 6.85 
Na(B12H13) 1.27 1.55 Na(B12H13)2 6.53 6.74 
K(B12H13) 1.06 1.21 K(B12H13)2 6.48 6.68 
Rb(B12H13) 1.14 1.30 Rb(B12H13)2 6.42 6.67 
Cs(B12H13) 1.05 1.18 Cs(B12H13)2 6.38 6.53 
Li(CB11H12) 0.90 1.05 Li(CB11H12)2 6.49 6.68 
Na(CB11H12) 1.25 1.51 Na(CB11H12)2 6.47 6.65 
K(CB11H12) 1.05 1.19 K(CB11H12)2 6.42 6.58 
Rb(CB11H12) 1.13 1.29 Rb(CB11H12)2 6.36 6.50 
Cs(CB11H12) 1.05 1.17 Cs(CB11H12)2 6.31 6.46 
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6.1.2.2 Hyperhalogens 

To see if Wade-Mingos rule can be applied to create hyperhalogens as well, we have considered 

M(B12H13)2 and M(CB11H12)2 where M=Li, Na, K, Rb, and Cs. In Figure 14 the geometries of 

only Na(B12H13)2 and Na(CB11H12)2 are given for illustrative purpose. Note that the NBO 

charges on the metal atoms are close to +1 indicating ionic bonding with the cage. As seen 

before, the charge distribution in the case of anionic clusters is more uniform than that in the 

neutral species. 

 

Figure 14. Geometries (left) and NBO charge distributions (right) of (a) Na(B12H13)2, (b) 
Na(B12H13)2

-, (c) Na(CB11H12)2 and (d) Na(CB11H12)2
- 
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The electron affinities and vertical detachment energies are given in Table 5. We note that these 

values are consistently larger than those of the corresponding superhalogen building blocks 

shown in Table 1. Hence, they can be classified as hyperhalogens. As in the case of 

superhalogens, here also the electron affinities gradually decrease from Li to Cs. The differences 

between the EAs and VDEs lie in the range of 0.1 to 0.3 eV suggesting that the relaxations of 

structures following photodetachment of the extra electron are minimal. 

 

6.1.2.3 Weakly Coordinating Anions vis a vis Superhalogens: 

Classes of bulky anions that interact weakly with cations are often referred to in the literature as 

weakly coordinating anions. These have attracted considerable attention due to their commercial 

importance in olefin polymerization, biomedicine, catalysis, and potential as components in 

lithium ion battery technology. Superhalogens and hyperhalogens are also of considerable 

importance in chemistry since they can be used in redox reactions involving compounds with 

high ionization potentials. Thus, a link between these two species may guide in the synthesis of 

new materials. In 1986, a new class anions based on stable boron cluster framework, namely 

CB11H12
- was introduced as a candidate for weakly coordinating anion.137 Since weak binding 

and large distance between the metal and anion complex are characteristic signatures of weakly 

coordinating anions, we have calculated the binding energies of MY (M= Li, Na, K, Rb, Cs, 

Y=B12H13 and CB11H12)   against fragmentation into M+ cation and Y- anion. For comparison, we 

have also calculated the analogous fragmentation energies for MF into M+ and F-. The distances 

between alkali metal atom and F range from 1.58 Å in LiF to 2.56 Å in CsF. The distances 

between the metal atom and nearest B atom in M(CB11H12), on the other hand, range from 2.20 

Å to 3.43 Å for M= Li and Cs, respectively. Similarly, the energies to dissociate MF to M+ and 

F- range from 8.02 eV in LiF to 5.04 eV in CsF. The corresponding dissociation energies of 
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M(CB11H12) into M+ and CB11H12
- are 5.41 eV in Li(CB11H12) and 3.39 eV in Cs(CB11H12). 

Thus, we understand why CB11H12
- meets the requirements of a weakly coordinating anion. We 

have repeated this exercise for the M(B12H13) species and confirm that B12H13
- is also a weakly 

coordinating anion. Similar ideas can be extended to other superhalogens and hyperhalogens.  

We are currently carrying a systematic study of this topic. 

 

6.1.2.4 Stability with respect to fragmentation 

Superhalogens and hyperhalogens are of considerable importance in chemistry as they can be 

used in redox reactions involving compounds with high ionization potentials and, thus, can be 

used to synthesize novel materials. For any potential applications, it is necessary to examine their 

stability with respect to fragmentation. We have, therefore, calculated their binding energies 

(∆E) against fragmentation into neutral and ionic species. For example, in the gas phase a neutral 

salt cluster (MY) would fragment into two neutral components M and Y while in a solution a 

MY salt would fragment into M+ and Y-. Here Y is a superhalogen. We have calculated the 

energies for different fragmentation channels using the following equations 

 

                      ∆E1=-[E(MY) - E(M) – E(Y)]            (1) 

∆E2=-[E(MY) - E(M+) – E(Y-)]  (2) 

∆E3=-[E(MY2
-) – E(MY) – E(Y-)  (3) 

∆E4=-[E(MY2
-) – E(M+) – 2E(Y-)]  (4) 

 

For comparison, we have also calculated the analogous fragmentation energies for MF and MF2. 

First we discuss the stabilities of neutral closed shell clusters M(B12H13) and M(CB11H12) and 
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compare these against closed shell MF (M=Li-Cs). The fragmentation energies, ∆E1 and ∆E2 

defined in Eq (1) and Eq.(2), are given in Table 6 and ∆E3 and ∆E4 defined in Eq (3) and Eq.(4), 

are given in Table 7.   We note that fragmentation energies, ∆E1 of MY and MF are very similar 

when they dissociate into neutral species. However, when they dissociate into ions, MY is more 

prone to dissociation compared to MF by about 1.6-2.6 eV. The fragmentation of negative ions 

of hyperhalogens, on the other hand, is somewhat different.  The relevant energies ∆E3 and ∆E4 

are given in Table 6. The fragmentation energies for MF2
- dissociating into neutral MF and F- are 

higher than those in MX2
- by 0.6-1.5 eV. However, the fragmentation energies ∆E4 for MF2

- 

dissociating into neutral M+ and 2F- are higher than those in MY2
- by a much larger amount, 

namely, 2-4 eV. This indicates that F- is much more strongly bound to the alkali metal atoms than 

either B12H13
- or CB11H12

- in the neutral closed shell clusters as well as in the hyperhalogens. Our 

theoretical results corroborate the experimental finding137 that CB11H12
- is a weakly coordinating 

anion and further suggest that B12H13
- is also one such anion.  

 

Table 6. Fragmentation energies (eV) of neutral closed shell clusters MF, M(B12H13) and 
M(CB11H12) for  (M=Li, Na, K, Rb, Cs) 

 

Cluster E1 Cluster E1 Cluster E1 
LiF 5.89 Li(B12H13) 5.18 Li(CB11H12) 5.18 
NaF 4.75 Na(B12H13) 4.52 Na(CB11H12) 4.53 
KF 5.01 K(B12H13) 4.84 K(CB11H12) 4.84 
RbF 4.45 Rb(B12H13) 4.66 Rb(CB11H12) 4.65 
CsF 4.51 Cs(B12H13) 4.78 Cs(CB11H12) 4.77 

Cluster E2 Cluster E2 Cluster E2 
LiF 8.02 Li(B12H13) 5.37 Li(CB11H12) 5.41 
NaF 6.68 Na(B12H13) 4.52 Na(CB11H12) 4.56 
KF 6.02 K(B12H13) 3.92 K(CB11H12) 3.94 
RbF 5.29 Rb(B12H13) 3.57 Rb(CB11H12) 3.60 
CsF 5.04 Cs(B12H13) 3.37 Cs(CB11H12) 3.39 
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Table 7. Fragmentation energies (eV) of anions of hyperhalogen clusters M(B12H13)2
-
 and 

M(CB11H12)2
-  for (M=Li, Na, K, Rb,Cs). The results are compared with MF2

-. 
 

Cluster E3 Cluster E3 Cluster E3 
LiF2

- 3.07 Li(B12H13)2
- 1.51 Li(CB11H12)2

- 1.55 
NaF2

- 2.73 Na(B12H13)2
- 1.55 Na(CB11H12)2

- 1.58 
KF2

- 2.14 K(B12H13)2
- 1.40 K(CB11H12)2

- 1.42 
RbF2

- 2.15 Rb(B12H13)2
- 1.37 Rb(CB11H12)2

- 1.39 
CsF2

- 1.97 Cs(B12H13)2
- 1.29 Cs(CB11H12)2

- 1.31 
Cluster E4 Cluster E4 Cluster E4 

LiF2
- 11.08 Li(B12H13)2

- 6.88 Li(CB11H12)2
- 6.96 

NaF2
- 9.42 Na(B12H13)2

- 6.07 Na(CB11H12)2
- 6.14 

KF2
- 8.16 K(B12H13)2

- 5.31 K(CB11H12)2
- 5.36 

RbF2
- 7.45 Rb(B12H13)2

- 4.94 Rb(CB11H12)2
- 4.98 

CsF2
- 7.01 Cs(B12H13)2

- 4.66 Cs(CB11H12)2
- 4.71 

 

6.1.3 Conclusions 

In summary, we have shown that superhalogens designed by the Wade-Mingo’s rule can be 

utilized to build salts and hyperhalogens. The superhalogens based on borane derivatives are 

weakly coordinating anions with potential for applications. We hope that the present work will 

motivate experimentalists to search for new bulky negative ions governed by the Wade-Mingos 

rule. 

 

6.2 Stabilization of Unusually High Oxidation States 

 

6.2.1 Introduction 

The oxidation state is a “measure of the degree of oxidation of an atom in a substance”138 and it 

is the fundamental key to understanding redox reactions, reaction mechanisms, catalysis etc. It is 

the charge an atom in a compound would have, if the bonding were completely ionic. This 

description makes the determination of oxidation states in covalent systems less transparent since 
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charges are shared between atoms and not completely transferred. In such systems, the oxidation 

state is determined by assigning the bonding electron pair to the more electronegative ligand. For 

example, the charge on the C atom in CH4 is -0.797, but its oxidation number is -IV. Explicit 

rules for assigning oxidation states are available in the IUPAC Gold Book.138 Transition metals, 

owing to their incomplete d-shells, exhibit variable oxidation states and hence form a large 

domain of complexes. The possibility of transforming Group 12 elements such as Zn into 

transition metals has fascinated chemists for decades. Due to Zn’s 3d104s2 ground state 

configuration and highly stable filled d-orbitals its inner d-electrons seldom take part in bonding 

and oxidation states of Zn beyond +II are difficult to achieve. Needless to say, the discovery of 

new oxidation states of Zn will enable us to formulate new reactions and develop new chemistry. 

This is particularly important as zinc has many applications in the pure metallic state (in alloys), 

as salts (used as white pigments), as bio-complexes (metallo-enzymes) and as organometallic 

reagents (used in organic synthesis).  

 

We realize that the major challenge in achieving an oxidation state of +III and higher for Group 

12 elements is to involve their inner d-orbitals. This is particularly difficult to accomplish for Zn 

since its third ionization potential is the largest amongst its congeners (39.7 eV, 37.5 eV and 34.2 

eV for Zn, Cd and Hg, respectively).139 Since this decreases as we go down the periodic table, 

significant effort has been made in the past to achieve higher oxidation states for the heavier 

element mercury. In 1976, a short-lived [HgIII(cyclam)]3+ species generated through 

electrochemical oxidation was reported.140  
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The +IV state of Hg is expected to be more stable than the +III state since it has the same 

electronic configuration (5d8) as that of the very stable Au3+ cation.141 Consequently, HgF4, 

where Hg is in a +IV oxidation state, was theoretically predicted about twenty years ago.141-143 

However, experimental observation eluded scientists until very recently when it was prepared by 

matrix isolation method.144 Also, Kaupp et al. have studied weakly coordinating anions as 

ligands that can stabilize +IV oxidation state of Hg.145 Unlike HgF4, in all cases they found that 

HgIV complexes have at least one exothermic fragmentation pathway. Zn has not yet been shown 

to exist in an oxidation state of +III or higher.  

 

We wondered if highly oxidizing ligands may enable Zn to exhibit +III oxidation state.  Armed 

with the knowledge superhalogens8 can have electron affinities (EA) far exceeding the value of 

halogen atoms, we embarked on a systematic study of the interaction of zinc with a variety of 

atoms and molecules with progressively increasing electron affinities. The high EA of these 

ligands can be expected to compensate for the large third ionization potential of Zn. In this work 

we address two fundamentals questions: (1) Can superhalogens stabilize the +III oxidation state 

of zinc? (2) Must d-orbitals be involved to achieve this? We have approached the problem in two 

ways. First, we have performed a methodical study of the equilibrium geometries and total 

energies of neutral and anionic ZnX3 clusters for X = F, BO2 and AuF6 using density functional 

theory. Note that the electron affinities of F, BO2, and AuF6 are, respectively, 3.4146, 4.571, and 

8.425 eV. In case of ZnX3, for zinc to be in +III oxidation state, it is necessary that zinc is bound 

to three individual monovalent ligands (X) which are more electronegative than zinc. Second, we 

have studied a simple ZnF4
- system and its corresponding ionic salt, KZnF4. Here also, the 

oxidation state of Zn has to be +III to satisfy the net charge of -1 for the ZnF4 anion. 
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6.2.2 Results and Discussions 

 

6.2.2.1 ZnX3 super and hyperhalogens 

The optimized structures of neutral and anionic ZnX3 are given in Figure 15. ZnX3
- molecules 

are expected to be very stable negative ions with large vertical detachment energies (VDE).  

 

Table 8 shows the adiabatic detachment energies (ADE) and vertical detachment energies of 

ZnX3
- clusters. The ADE was determined by calculating the energy difference between the anion 

ground state of a cluster and its neutral. The VDE, on the other hand, was calculated by taking 

the energy difference between the anion and the neutral, both at the anion ground state geometry. 

Our calculations show that, indeed, ZnF3 is a superhalogen, KZnF3 being a well-known 

perovskite salt.146 Similarly, we find Zn(BO2)3 and Zn(AuF6)3 to be hyperhalogens. The 

oxidation state of Zn is +II in these anions. To achieve +III oxidation state, ZnX3 molecules must 

also be stable as neutrals. The structure, bonding and stability of neutral ZnX3 are discussed 

below.  

 

Table 8. Adiabatic Detachment Energies (ADE) and Vertical Detachment Energies (VDE) of 
ZnX3 clusters for X=F, BO2 and AuF6 

 

Cluster ADE VDE 
ZnF3

- 6.20 6.59 
Zn(BO2)3

- 5.63 6.78 
Zn(AuF6)3

- 9.38 9.82 
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Figure 15. Optimized structures of neutral (a-d) and anionic (e-g) ZnX3 (X=F, BO2 and AuF6) 

clusters. Bond lengths are in Å. 
Purple, blue, yellow, red and pink represent Zn, F, Au, O and B respectively. 
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6.2.2.2 ZnF3 

ZnF3 is planar with C2v symmetry and has two Zn-F bond lengths (1.93 Å and 1.76 Å) signifying 

two different bond strengths. These results are in good agreement with earlier work on ZnF3 

performed at the B3LYP and CCSD(T) levels using effective core potentials, ECP of the 

Stuttgart group for Zn and aug-cc-pVTZ basis set for F. The F-F bond distance between the two 

nearest F atoms is 2.04 Å.147 It is worthwhile to point out that this distance is only slightly longer 

than the F-F bond distance in F2
- molecule (2.01 Å). This suggests that the two close F atoms in 

ZnF3 are quasi-molecular. The quasi-molecular nature of two of the F atoms in ZnF3 is further 

demonstrated in Figure 16 where we compare the charge density contours around the two closest 

F atoms in ZnF3 with that around the F atoms in F2
-. The presence of an F-F quasi-molecular 

interaction indicates that Zn should be in +II oxidation state, not +III. This can be understood by 

comparing the molecule with BaO2. Conventionally, O is assigned an oxidation state of -II in 

most compounds.  However, as there is a peroxo-linkage between the two O atoms in BaO2, the 

oxidation state of O is assigned to be –I and that of Ba is not +IV, but +II. Similarly, in ZnF3, the 

two quasi-molecular F atoms should each be assigned an oxidation state of -½, thereby making 

the formal oxidation state of zinc +II. It is important to note that the fragmentation of ZnF3 into 

ZnF2 and ½ F2 is favorable (see Table S2 in Appendix II). The reaction is slightly exothermic (by 

0.06 eV) which confirms earlier work that it is not a stable compound of Zn in +III oxidation 

state.147   
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Figure 16. Contour diagrams of (a) isolated F2
- and (b) two closest F atoms in ZnF3. The contour 

diagrams were plotted using default isovalues in Gaussview 5.0. Identical isovalues were used 
for both molecules. 

 

6.2.2.3 Zn(BO2)3 

Unlike ZnF3, the ground state of Zn(BO2)3 is stable with respect to fragmentation (see Table S3 

in supporting information). However, here Zn is attached to one BO2 ligand and one B2O4 ligand. 

This is because two molecules of BO2 dimerize exothermically (-1.70 eV) to form B2O4. The 

BO2 and B2O4 ligands can be both trans and cis to each other giving rise to two degenerate 

structures. The significance of this result is that Zn is not in +III oxidation state even though 

there are three BO2 units in the molecule. We were able to determine a local minimum geometry 

where all the BO2 moieties are attached individually to Zn i.e. a structure where Zn can be in +III 

oxidation state. However, this structure is 1.07 eV higher in energy than the ground state. Some 

energetically low-lying structures of neutral and anionic Zn(BO2)3 are given in Figure S4 and 

Figure S5. 



www.manaraa.com

 
 

87 
 

6.2.2.4 Zn(AuF6)3 

Zn(AuF6)3 has C2 symmetry. Zn is surrounded by three AuF6 units. The three Au atoms form the 

vertices of an isosceles triangle with the Au-Au distance being 5.92 Å for the equal sides of the 

triangle and the remaining Au-Au distance being 4.56 Å. The Zn atom is at a distance of 3.15 Å 

from one Au atom and 3.26 Å from the other two Au atoms. Zn is hexa-coordinated with six F 

atoms. We note that as in the case of ZnF3, here also, two AuF6 moieties are close to each other. 

However, in contrast to ZnF3, Zn(AuF6)3 is stable against all the fragmentation channels studied 

(see Table S4). Therefore, Zn(AuF6)3 is a stable molecule of Zn in the +III oxidation state. 

 

 

Figure 17. Optimized structures of (a) two degenerate (AuF6)2
- anions, (b) isolated (AuF6)2 and 

(c) the two close AuF6 moieties in Zn(AuF6)3 .  
Bond lengths are in Å. 
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6.2.2.5 Charge distribution and stability 

Now the question arises if the inner 3d electrons are involved in bonding or not in the ZnX3 

clusters. To understand the nature of bonding involved, we computed the Natural Bond Orbitals 

(NBO) charge distributions (see Table S6 in supporting information). The natural population 

analysis indicates that the d-orbitals of Zn are completely filled in ZnF3. The NBO charge on Zn 

is 1.682. The charge on one of the F atoms is -0.821 while the charge on each of the other two 

quasi-molecular F atoms is about -0.430. This indicates that while one 4s electron of Zn is 

“transferred” to one F atom, the other electron is shared between the remaining two F atoms. In 

both the cis and trans isomers of Zn(BO2)3, the charge on Zn is 1.655 while those on the BO2 and 

B2O4 units are -0.844 and -0.811 respectively, indicating that the two s electrons of Zn are 

transferred to the two ligands. As before, the d-orbitals in Zn are completely occupied. In 

Zn(AuF6)3, one AuF6 moiety has a charge of -0.893 whereas the two AuF6 groups closer to each 

other have a charge of -0.428 indicating that one s electron of Zn is transferred to one AuF6 

ligand while the other s electron is shared by the remaining two AuF6 groups. This is similar to 

the case of ZnF3.  Again, the natural population analysis suggests that the d-orbitals of Zn are 

completely occupied in Zn(AuF6)3. To understand why Zn should be in +III oxidation state in 

Zn(AuF6)3 while it is in +II oxidation state in ZnF3, we point out a major difference between the 

bonding in ZnF3 and Zn(AuF6)3. As stated before, the two closest F atoms in ZnF3 appear to 

form a quasi-molecular F2
- unit. Hence, even if ZnF3 were stable with respect to fragmentation, 

the oxidation state of Zn would still be +II. This possibility is negated in case of Zn(AuF6)3. 

Though two of the AuF6 moieties are close to each other, they do not form a quasi-molecular 

(AuF6)2
- unit. This is because (AuF6)2

- itself is not a stable molecule as F2
- is and it fragments 

into Au2F11
- and ½ F2 releasing 0.42 eV of energy. Similarly, neutral (AuF6)2 is also unstable by 
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2.02 eV (see Table S1). Also, comparison of the optimized geometries of (AuF6)2 and (AuF6)2
- 

with the geometry of the two close AuF6 moieties in Zn(AuF6)3 show stark differences in the 

structures (see Figure 17) which further reduce the possibility of quasi-molecular interaction 

between the two close AuF6 moieties in Zn(AuF6)3. Therefore, Zn(AuF6)3 is a genuine and stable 

compound of Zn in +III oxidation state. As far as the direct participation of d-orbitals in bonding 

is concerned, we note that NBO charge of +3 in Zn is only possible if bonding is purely ionic. In 

neutral Zn(AuF6)3 the bonding is not purely ionic, rather a combination of covalent and ionic 

bonding is featured. We want to emphasize that here the focus is on Zn in +III oxidation state 

and not in +3 cationic state. We show that Zn does not have to give up a d-electron to be in +III 

oxidation state, though it is a requirement for it to be in +3 cationic state. In this connection, we 

note that in AuF6
-, a d6 system, Au exists in a +V oxidation state, but the NBO charge on Au is 

not +5, but +2.116. Also, the natural electron configuration is [core] 6s0.38 5d8.46 as opposed to 

[core] 5d6. Moreover, in case of HgIVF4 (which has been experimentally confirmed144), Hg does 

not give up two d-electrons to become a “true” +4 cation according to natural population 

analysis. As a matter of fact, the NBO charge on Hg is +2.019 and its electronic configuration is 

[core] 6s0.56 5d 9.37 whereas for a true Hg4+ cation it should be [core] 5d8. Therefore, the formal 

oxidation state and partial atomic charges are two fundamentally different concepts as had been 

pointed out earlier by Kaupp and Schnering.148 Our results imply that to attain the +III oxidation 

state of Zn, two criteria should be simultaneously satisfied: we require ligands with higher 

electron affinity and ligands that do not preferentially dimerize. The success of AuF6 as a ligand 

is attributed to the fulfillment of these two requirements. 
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An alternate approach to stabilize Zn(III) is in the form of an anionic molecule. We have studied 

ZnF4
- and KZnF4 as potential candidates. Optimized structures and fragmentation energies are 

given the in the supporting information (Figure S7 and Table S5). We note that an earlier gas 

phase study had shown that ZnF4
- is stable with respect to atomic or molecular fluorine 

ejection.147 It was suggested that the stability can be increased further by building salts with a 

counterion. Our calculations indicate that ZnF4
- is stable in the gas phase. However, it is likely 

that the formation of the energetically more favorable salt K2ZnF4, where zinc is in +II oxidation 

state, will be preferred over that of KZnF4, especially in the condensed phase. The energies 

corresponding to the lowest energy fragmentation pathway of all the clusters studied are given in 

Table 9. To verify the magnitude of these energies, the structures were re-optimized at the 

M06134 level using SDD basis99,100 for Au, aug-cc-pVTZ135 basis for Zn, B, O, F and 6-311+G* 

for K.  

 

Table 9. Fragmentation energies of neutral ZnX3 clusters, ZnF4
- and KZnF4 for the lowest 

energy pathways. B3LYP zero-point corrected energies are given in parentheses 
 

Cluster Fragmentation Pathway Fragmentation Energy (eV) 
 Method B3LYP M06 

 Basis Au: SDD; Zn, B, O, 
F, K: 6-311+G* 

Au: SDD; K: 6-
311+G*; Zn, B, O, F: 

aug-cc-pvtz 
ZnF3 ZnF2 + ½ F2 -0.06 (-0.05) -0.23 

Zn(BO2)3 Zn(BO2)2 + ½ B2O4 1.07 (1.03) 1.32 
Zn(AuF6)3 Zn(AuF6)2 + ½ Au2F10 + ½ F2 0.26 (0.23) 0.17 

ZnF4
- ZnF3

- + ½ F2 0.11 (0.11) 0.01 
KZnF4 ½ K2ZnF4 + ½ ZnF2 + ½ F2 -0.07 (-0.06) -0.16 

 

It should be mentioned here that Riedel, Straka and Kaupp have tried to utilize ‘weakly 

coordinating anions’ such as AlF4
-, Al2F7

-, AsF6
- etc. to stabilize the +IV oxidation state of Hg.145 
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In their work they have also stated that aggregation of the ligands is a major obstacle to 

achieving higher oxidation states. Furthermore, it is interesting to note that the weakly 

coordinating ligands tested were all superhalogens, that is, they all have high electron affinities. 

In fact, we believe that most weakly coordinating ligands are superhalogens and hence they 

derive their property to stabilize high oxidation states of metals. Our results open the door for the 

synthesis of new compounds containing metals in unusual oxidation states with potential for 

applications. It has already been demonstrated that unusually high oxidations states of elements 

have important consequences. For example, high valent iron (Fe) such as FeIV (in oxoferryl 

porphyrins) and FeV (in nitridoirons) are important in biochemistry149 whereas FeVI (in FeO4
2-) 

has been used for waste water management.150  

 

6.2.3 Conclusions 

In summary, we have shown that higher and unusual oxidation states of metals can be achieved 

using ligands with large electron affinities such as superhalogens. We have demonstrated this 

with the particular case of Zn(AuF6)3 in which zinc is in a hitherto unknown +III oxidation state. 

In addition to bearing large electron affinities, it is also important that these ligands have no 

tendency to dimerize since the contrary would favor fragmentation of the metal-ligand complex. 

Equally important, we show that ZnF3 is a superhalogen with a vertical detachment energy 

(VDE) of 6.59 eV while Zn(AuF6)3 is a hyperhalogen with a VDE of 9.82 eV. Consequently, 

these molecules are predicted to form very stable negative ions. However, in the neutral form, 

whereas ZnF3 is not stable with respect to fragmentation, Zn(AuF6)3 is by 0.26 eV. Though the 

oxidation state of zinc in the latter molecule is +III, it seems from the NBO charge distribution 

and natural population analysis that the d-orbitals of zinc are not directly involved in bonding. 
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We note that the NBO charge alone can be used to determine the oxidation state if the bonding is 

purely ionic, i.e. there is complete charge transfer between the metal and the ligand. However, 

the situation is less clear when the bonding is partly ionic and partly covalent. Nonetheless, our 

results show that even in the absence of significant direct involvement of d-electrons, it is still 

possible to increase the degree of oxidation of a species and hence form new compounds by 

using specific ligands. This finding not only demonstrates a way to enhance the chemistry of zinc 

but also opens the door for the synthesis of unusual compounds by using the strong oxidizing 

property of superhalogens. 
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Chapter 7 Summary 
 
 
 
In summary, traditional superhalogens are metal-halogen clusters that supersede Cl in terms of 

electron affinity. We have studied two types of unconventional superhalogens, namely, borane-

based superhalogens and pseudohalogen-based superhalogens.  

 

We find that the Wade-Mingo’s rule can also be used as an electron counting rule to design 

novel superhalogens of borane-derivatives. Unlike conventional superhalogens which have a 

metal atom at the core surrounded by halogen atoms, the superhalogens formed using the Wade-

Mingos rule do not have to have either halogen or metal atoms. We demonstrate this by using 

B12H13 and its isoelectronic cluster, CB11H12 as examples. We also show that while conventional 

superhalogens containing alkali atoms require at least two halogen atoms, only one borane-like 

moiety is sufficient to render M(B12H12) (M=Li, Na, K, Rb, Cs) clusters superhalogen properties. 

In addition, hyperhalogens can be formed by using the above superhalogens as building blocks. 

Examples include M(B12H13)2 and M(CB11H12)2 (M=Li - Cs). This finding opens the door to an 

untapped source of superhalogens and weakly coordinating anions with potential applications. 

 

Similarly, we find that pseudohalogens can also be used in place of halogens to design new 

superhalogens. We have shown that when a central Au atom is surrounded by CN moieties, 

superhalogens can be created with electron detachment energies as high as 8.4 eV. However, 

there is a stark contrast between the stability of these superhalogens and that of conventional 
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AuFn superhalogens. Whereas AuFn complexes are stable upto n=5 for neutrals and n=6 for 

anions, Au(CN)n complexes (with CN moieties attached individually) are metastable beyond n=1 

for neutrals and n=3 for anions. This is a major limitation of pseudohalogens in building 

superhalogens. In addition, we have elucidated important distinctions between electron affinity 

(EA) and adiabatic detachment energy (ADE), two terms that are often used synonymously in 

literature.  

 

Furthermore, we have shown one very important application of superhalogens. Superhalogens 

are expected to be strong oxidizing agents due to their high electron affinities. We have shown 

that by choosing specific ligands it is possible to increase the oxidation state of a metal beyond 

what is currently known. We have demonstrated this with the example of Zn(AuF6)3 where Zn is 

in a hitherto unknown +III oxidation state. 

 

Currently, we are working on studying how the superhalogen properties of borane-based clusters 

evolve with size and composition. We are also testing the applications of superhalogens in 

designing high energy density salts. Since theory based on density functional theory has 

predictive power, we hope that our research will motivate experimentalists to synthesize bulk 

materials containing superhalogens and test their applications. 
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Appendix I 

Isomers of Au(CN)3 

 
 
 
To search for the ground state of the anionic and neutral geometry of the Au(CN)3 cluster, we 

started the optimization with 22 different initial structures. In all cases, the frequencies were 

found to be positive after optimization indicating these structures are at least dynamically stable.  

 

I-1 Dissociative attachment of CN to Au in Au(CN)3 and Au(CN)3
- 

We optimized 6 different geometries for this mode of attachment and they are shown in Figure 

S1. Blue represents N, grey represents C and yellow represents Au. 

 

I-2 Attachment of CN after dimerization to Au in Au(CN)3 and Au(CN)3
- 

We optimized eight different geometries for this mode of attachment and they are shown in 

Figure S2. 

 

I-3 Attachment of CN after trimerization to Au in Au(CN)3 and Au(CN)3
- 

We optimized 8 different geometries for this mode of attachment and they are shown in Figure 

S3. Other configurations outside those shown below are also possible. However, note that the 

energies of all the isomers are about 3 eV higher than the ground state structures shown in Figure 

1 (a) and therefore, are not of significant interest. 
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Figure S1. Isomers of Au(CN)3 for dissociative attachment of CN 
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Figure S2. Isomers of Au(CN)3 for attachment of CN after dimerization 
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Figure S3. Isomers of Au(CN)3 for attachment of CN after trimerization 
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Appendix II 

Supporting Information for Zn in +III Oxidation State 

 
 
 
 
II-1 Optimized geometries of isomers of Zn(BO2)3  

 

To obtain the lowest energy structures, calculations were performed at the B3LYP/6-311+G* 

level starting with several initial geometries. Calculations revealed that indeed many isomers are 

possible for both neutral and anionic Zn(BO2)3 clusters. Some of the energetically low-lying 

isomers are shown in Figure S4 and Figure S5. Note, more isomers, especially rotamers may also 

exist. All the structures presented below are optimized structures and they contain no imaginary 

frequencies indicating their dynamic stability. 
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Figure S4. Some energetically low-lying isomers of neutral Zn(BO2)3 
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Figure S5. Some energetically low-lying isomers of Zn(BO2)3 anion 
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II-2 Fragmentation energies of the clusters studied 

 

To study the thermodynamic stability of these molecules, we calculated the energies associated 

with different fragmentation pathways. We report all energies without zero point corrections as 

these do not alter thermochemistry significantly. All calculations have been done using the 

B3LYP hybrid functional for exchange-correlation potential. The 6-311+G* basis set for Zn, F, 

B and O and Stuttgart pseudopotential SDD for Au have been used.  

 

The fragmentation energies (∆E), i.e. the energy needed to fragment the parent cluster into the 

products are tabulated in Table S1-Table S5. Note that positive value of ∆E means that the parent 

cluster is stable against the dissociation channel indicated. During the fragmentation of a 

negative ion species, the negative charge will be borne by the fragment with a higher ADE value. 

For example, when ZnF- fragments into Zn and F, the negative charge will be on F (electron 

affinity of F is 3.40 eV) and not on Zn (electron affinity of Zn is 1.03 eV). Also, species that 

form stable dimers will not be ejected as monomers. For example, ZnF will not dissociate 

preferentially into Zn and F, but to Zn and ½ F2.  

 

To understand ligand behavior, first we have calculated the fragmentation energies of neutral and 

anionic X2 where X=F, BO2 and AuF6. Then we have calculated fragmentation energies of 

neutral and anionic ZnX3 clusters, ZnF4
- and KZnF4. Since dispersion interactions are important 

for the stability of clusters such as (AuF6)2 and (AuF6)2
-, we have repeated the calculation of 

lowest energy fragmentation pathway of these two clusters at the M06 level using SDD basis for 

Au and aug-cc pVTZ for F. These energy values are given in parenthesis in Table S1. 
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Table S1. Fragmentation energies of neutral and anionic X2 (X= F, BO2 and AuF6) 

 

Clusters Fragmentation 
Products ∆E 

F2 
  
2 F 1.38 

F2
- 

  
F- + ½ F2 1.12 
F + F- 1.81 

(BO2)2 
  
2 BO2 1.70 

(BO2)2
- 

  
BO2

- + ½ B2O4 1.21 
BO2 + BO2

- 2.06 

(AuF6)2 

  
Au2F10 + F2 -2.02 (-2.04) 
2 AuF4 + 2 F2 -0.80 
AuF6 + AuF6 -0.16 

(AuF6)2
- 

  
Au2F11

- + ½ F2 -0.42 (-0.61) 
Au2F11

- + F 0.27 
Au2F10

- + F2 0.32 
AuF4 + F2 + AuF6

- 1.07 
AuF6 + AuF6

- 1.39 
Au2F10 + F2

- 4.06 
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Table S2. Fragmentation energies of neutral and anionic ZnF3 clusters 

Clusters Fragmentation Products ∆E 

ZnF3 

  
ZnF2 + ½ F2 -0.06[a] 
ZnF2 + F 0.63[a] 
ZnF + F2 4.16[a] 

ZnF3
- 

  
ZnF2 + F- 3.35 
ZnF2

- + ½ F2 4.89 
ZnF2

- + F 5.58 
ZnF + F2

- 6.44 
ZnF- + F2 8.24 

 

[a] Earlier work by Riedel et al. has found these energies to be -0.24 eV, 0.56 eV and 3.97 eV 

respectively, at the B3LYP level and -0.61 eV, 0.18 eV and 3.90 eV respectively at the CCSD(T) 

level using effective core pseudopotential for Zn and aug-cc-pVTZ for F atom.147 Our value is 

different since we have used an all electron basis set 6-311+G* for Zn.  

 

Table S3. Fragmentation energies of neutral and anionic Zn(BO2)3 clusters 

Cluster Fragmentation Products ∆E 

Zn(BO2)3 

  
Zn(BO2)2 + ½ B2O4 1.07α 
Zn(BO2)2 + BO2 1.92 
ZnBO2 + B2O4 4.11 

Zn(BO2)3
- 

  
Zn(BO2)2 + BO2

- 3.20 
Zn(BO2)2

- + ½ B2O4 4.07 
Zn(BO2)2

- + BO2 4.92 
ZnBO2 + B2O4

- 5.03 
ZnBO2

- + B2O4 6.80 
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Table S4. Fragmentation energies of neutral and anionic Zn(AuF6)3 clusters 

Cluster Fragmentation products ∆E 
   

Zn(AuF6)3 

Zn(AuF6)2 + ½ Au2F10 + ½ F2 0.26 
Zn(AuF6)2 + AuF4 + F2 0.87 
Zn(AuF6)2 + AuF6 1.19 
ZnAuF6 + Au2F10 + F2 2.16 
ZnF2 + 3/2 Au2F10 + ½ F2 2.57 
ZnF2 + Au2F10 + AuF4 + F2 3.18 
ZnAuF6 + 2 AuF4 + 2F2 3.38 
ZnAuF6 + 2 AuF5 + F2 4.50 
ZnF2 + 3 AuF3 + 7/2 F2 7.20 

   

Zn(AuF6)3
- 

Zn(AuF6)2 + AuF6
- 2.13 

Zn(AuF6)2
- + ½ Au2F10 + ½ F2 2.84 

Zn(AuF6)2
- + AuF4 + F2 3.44 

ZnAuF6 + (AuF6)2
- 3.57 

Zn(AuF6)2
- + ½ (AuF6)2 3.85 

Zn(AuF6)2 + ½ Au2F10
- + ½ F2

- 3.85 
ZnAuF6 + Au2F10

- + F2 3.89 
 

αThis energy at the M06 optimized level using aug-cc-pVTZ for Zn, B, O and F is 1.32 eV. The 

M06 optimized Zn(BO2)3 structure contains one imaginary frequency. If the imaginary frequency 

is removed, the energy of the structure will further decrease, thereby increasing ∆E. That is, the 

cluster will be slightly more stable than indicated by these numbers. 
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Table S5. Fragmentation energies of neutral and anionic ZnF4
- and KZnF4 clusters 

Cluster Fragmentation products ∆E 
   

ZnF4
- 

ZnF3
- + ½ F2 0.11 

ZnF3
- + F 0.80 

ZnF2 + F2
- 2.34 

ZnF3 + F- 3.52 
ZnF2

- + F2 5.00 
ZnF- + 3/2 F2 8.35 

   

KZnF4 

½ K2ZnF4 + ½ ZnF2 + ½ F2 -0.07 
KZnF3 + ½ F2 0.41 
KZnF3 + F 1.10 
KF + ZnF2 + ½ F2 2.09 

 

 

II-3 NBO charge distribution in neutral and anionic ZnX3 clusters (X=F, BO2, AuF6), ZnF4
- 

and KZnF4 

 

Natural Bond Orbital (NBO) charges were calculated for the lowest energy ZnX3, ZnF4
- and 

KZnF4 clusters where X=F, BO2, AuF6. These NBO charges denote the electronic charge 

distribution over each atom and hence are indicative of the nature of bonding involved. The NBO 

charges for the lowest energy structures of different ZnX3 clusters studied are presented below in 

Table S6. Figure S6 shows the numbering scheme used for the atoms.  
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Figure S6. Numbering scheme for the atoms in ZnX3 and ZnX3
- clusters 
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Table S6. NBO charge distribution in ZnX3 and ZnX3
- clusters 

 

Cluster Neutral Anion 
Atom Number Natural Charge Atom Number Natural Charge 

       
 
ZnF3 

Zn 1 1.682 Zn 1 1.688 
F 2 -0.426 F 2 -0.896 
F 3 -0.434 F 3 -0.896 
F 4 -0.821 F 4 -0.896 

        
   cis trans    
 
 
 
 
Zn(BO2)3 

B 1 1.210 1.211 Zn 1 1.751 
O 2 -1.120 -1.121 O 2 -1.181 
O 3 -0.860 -0.850 B 3 1.177 
O 4 -0.827 -0.827 O 4 -0.913 
B 5 1.107 1.106 O 5 -1.182 
O 6 -0.320 -0.321 B 6 1.177 
Zn 7 1.654 1.655 O 7 -0.913 
O 8 -0.836 -0.837 O 8 -1.181 
O 9 -1.191 -1.190 B 9 1.177 
B 10 1.184 1.183 O 10 -0.913 

       
 
 
 
 
 
 
 
 
 
 
Zn(AuF6)3 

Zn 1 1.749 Zn 1 1.753 
Au 2 2.134 Au 2 2.136 
F 3 -0.484 F 3 -0.433 
F 4 -0.631 F 4 -0.433 
F 5 -0.631 F 5 -0.493 
F 6 -0.394 F 6 -0.490 
F 7 -0.493 F 7 -0.602 
F 8 -0.394 F 8 -0.603 
Au 9 2.123 Au 9 2.136 
F 10 -0.355 F 10 -0.490 
F 11 -0.396 F 11 -0.433 
F 12 -0.399 F 12 -0.433 
F 13 -0.586 F 13 -0.603 
F 14 -0.227 F 14 -0.493 
F 15 -0.588 F 15 -0.602 
Au 16 2.123 Au 16 2.136 
F 17 -0.399 F 17 -0.433 
F 18 -0.355 F 18 -0.491 
F 19 -0.396 F 19 -0.433 
F 20 -0.589 F 20 -0.603 
F 21 -0.586 F 21 -0.603 
F 22 -0.226 F 22 -0.492 
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Figure S7 shows the optimized structures and numbering scheme used for ZnF4
- and KZnF4 

clusters. The NBO charge distribution is shown in Table S7. 

 

 

Figure S7. Optimized geometries with numbering schemes of ZnF4
- and KZnF4 

 

Table S7. NBO charge distribution in ZnF4
- and KZnX4 clusters 

Cluster Atom Number Natural Charge 

ZnF4
- 

   
Zn 1 1.855 
F 2 -0.713 
F 3 -0.714 
F 4 -0.714 
F 5 -0.714 

KZnF4 

   
Zn 1 1.820 
F 2 -0.651 
F 3 -0.650 
F 4 -0.748 
F 5 -0.754 
K 6 0.983 
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